Skip to main content

The Cardiac Conduction System

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

The intrinsic conduction system of the heart is comprised of several specialized subpopulations of cells that either spontaneously generate electrical activity (pacemaker cells) or preferentially conduct this activity throughout the chambers in a coordinated fashion. This chapter will discuss the details of this known anatomy as well as put such discoveries into a historical context. The cardiac action potential underlies signaling within the heart and the various populations of myocytes will elicit signature waveforms. The recording or active sensing of these potentials is important in both research and clinical arenas. This chapter aims to provide a basic understanding of the cardiac conduction system to provide the reader with a foundation for future research and reading on this topic. The information in this chapter is not comprehensive and should not be used to make decisions relating to patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ho SY, Kilpatrick L, Kanai T, et al. The architecture of the atrioventricular conduction axis in dog compared to man—Its significance to ablation of the atrioventricular nodal approaches. J Cardiovasc Electrophysiol 1995;6:26–39.

    Article  PubMed  CAS  Google Scholar 

  2. Racker DK, Kadish AH. Proximal atrioventricular bundle, atrioventricular node, and distal atrioventricular bundle are distinct anatomic structures with unique histological characteristics and innervation. Circulation 2000;101:1049–59.

    PubMed  CAS  Google Scholar 

  3. Furman S. A brief history of cardiac stimulation and electrophysiology—The past fifty years and the next century. NASPE Keynote Address, 1995.

    Google Scholar 

  4. Boyett D, Dobrzynski H. The sinoatrial node is still setting the pace 100 years after its discovery. Circ Res 2007;100:1543–5.

    Article  PubMed  CAS  Google Scholar 

  5. His W, Jr. Die Tatigkeit des embryonalen herzens und deren bedcutung fur die lehre von der herzbewegung beim erwachsenen. Artbeiten aus der Medizinischen Klinik zu Leipzig, 1893;1:14–49.

    Google Scholar 

  6. Tawara S. Das Reizleitungssystem des Saugetierherzens: Eine anatomisch-histologische Studie uber das Atrioventrikularbundel und die Purkinjeschen Faden. Jena, Germany: Gustav Fischer, 1906: 9–70, 114–56.

    Google Scholar 

  7. Conti AA, Giaccardi M, Yen Ho S, Padeletti L. Koch and the “ultimum moriens” theory—The last part to die of the heart. J Interv Card Electrophysiol 2006;15:69–70.

    Article  PubMed  Google Scholar 

  8. Koch WK. Der funktionelle bau des menschlichen herzen. Berlin and Vienna: Urban und Schwarzenberg, 1922.

    Google Scholar 

  9. Sorensen ER, Manna D, McCourt K. Use of epicardial pacing wires after coronary artery bypass surgery. Heart Lung 1994;23:487–92.

    PubMed  CAS  Google Scholar 

  10. Villain E, Ouarda F, Beyler C, Sidi D, Abid F. Predictive factors for late complete atrioventricular block after surgical treatment for congenital cardiopathy. [Article in French.] Arch Mal Coeur Vaiss 2003;96:495–8.

    PubMed  CAS  Google Scholar 

  11. Bae EJ, Lee JY, Noh CI, Kim WH, Kim YJ. Sinus node dysfunction after fontan modifications—Influence of surgical method. Int J Cardiol 2003;88:285–91.

    Article  PubMed  Google Scholar 

  12. Hussain A, Malik A, Jalal A, Rehman M. Abnormalities of conduction after total correction of Fallot’s Tetralogy: A prospective study. J Pak Med Assoc 2002;52:77–82.

    PubMed  CAS  Google Scholar 

  13. Bruckheimer E, Berul CI, Kopf GS, et al. Late recovery of surgically-induced atrioventricular block in patients with congenital heart disease. J Interv Card Electrophysiol 2002;6:191–5.

    Article  PubMed  Google Scholar 

  14. Ghosh PK, Singh H, Bidwai PS. Complete A–V block and phrenic paralysis complicating surgical closure of ventricular septal defect—A case report. Indian Heart J 1989;41:335–7.

    PubMed  CAS  Google Scholar 

  15. Hill SL, Berul CI, Patel HT, Rhodes J, Supran SE, Cao QL, Hijazi ZM. Early ECG abnormalities associated with transcatheter closure of atrial septal defects using the Amplatzer Septal Occluder. J Interv Card Electrophysiol 2000;4:469–74.

    Article  PubMed  CAS  Google Scholar 

  16. Deshmukh P, Casavant DA, Romanyshyn M, Anderson K. Permanent direct His-bundle pacing: A novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation 2000;101:869–77.

    PubMed  CAS  Google Scholar 

  17. Karpawich P, Gates J, Stokes K. Septal His-Purkinje ventricular pacing in canines: A new endocardial electrode approach. PACE 1992;15:2011–5.

    Article  PubMed  CAS  Google Scholar 

  18. Karpawich PP, Gillette PC, Lewis RM, Zinner A, McNamera DG. Chronic epicardial His bundle recordings in awake nonsedated dogs: A new method. Am Heart J 1983;105:16–21.

    Article  PubMed  CAS  Google Scholar 

  19. Scheinman MM, Saxon LA. Long-term His-bundle pacing and cardiac function. Circulation 2000;101:836–7.

    PubMed  CAS  Google Scholar 

  20. Williams DO, Sherlag BJ, Hope RR, El-Sherif N, Lazzara R, Samet P. Selective versus non-selective His bundle pacing. Cardiovasc Res 1976;10:91–100.

    Article  PubMed  CAS  Google Scholar 

  21. Karpawich PP, Rabah R, Haas JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. PACE 1999;22:1372–7.

    Article  PubMed  CAS  Google Scholar 

  22. de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing: A quantitative review. Europace 2003;5:275–8.

    Article  PubMed  Google Scholar 

  23. Cleland JG, Daubert JC, Erdmann E, et al. CARE-HF study Steering Committee and Investigators. The CARE-HF study (CArdiac REsynchronisation in Heart Failure study): Rationale, design and end-points. Eur J Heart Fail 2001;3:481–9.

    Article  PubMed  CAS  Google Scholar 

  24. Leclercq C, Daubert JC. Cardiac resynchronization therapy is an important advance in the management of congestive heart failure. J Cardiovasc Electrophysiol 2003;14:S27–9.

    Article  PubMed  Google Scholar 

  25. Miake J, Marban H, Nuss B. Biological pacemaker created by gene transfer. Nature 2002;419:132–3.

    Article  PubMed  CAS  Google Scholar 

  26. Nattel S, Khairy P, Roy D, et al. New approaches to atrial fibrillation management: A critical review of a rapidly evolving field. Drugs 2002;62:2377–97.

    Article  PubMed  Google Scholar 

  27. Takahashi Y, Yoshito I, Takahashi A, et al. Ablation and Pacing Therapy Working Group. AV nodal ablation and pacemaker implantation improves hemodynamic function in atrial fibrillation. Pacing Clin Electrophysiol 2003;26:1212–7.

    Article  PubMed  Google Scholar 

  28. Bernat R, Pfeiffer D. Long-term Rand learning curve for radio frequency ablation of accessory pathways. Coll Antropol 2003;27:83–91.

    PubMed  Google Scholar 

  29. Gaita F, Riccardi R, Gallotti R. Surgical approaches to atrial fibrillation. Card Electrophysiol Rev 2002;6:401–5.

    Article  PubMed  Google Scholar 

  30. Betts TR, Roberts PR, Ho SY, Morgan JM. High density mapping of shifts in the site of earliest depolarization during sinus rhythm and sinus tachycardia. PACE 2003;26:874–82.

    Article  PubMed  Google Scholar 

  31. Boineau JB, Schuessler RB, Hackel DB, et al. Widespread distribution and rate differentiation of the atrial pacemaker complex. Am J Physiol 1980;239:H406–15.

    PubMed  CAS  Google Scholar 

  32. Boineau JB, Schuessler RB, Mooney CR. Multicentric origin of the atrial depolarization wave: The pacemaker complex. Relation to the dynamics of atrial conduction, P-wave changes and heart rate control. Circulation 1978;58:1036–48.

    PubMed  CAS  Google Scholar 

  33. Lee RJ, Kalman JM, Fitzpatrick AP, et al. Radiofrequency catheter modification of the sinus node for ‘inappropriate’ sinus tachycardia. Circulation 1995;92:2919–28.

    PubMed  CAS  Google Scholar 

  34. Tranum-Jensen J. The fine structure of the atrial and atrio-ventricular (AV) junctional specialized tissues of the rabbit heart. In: Wellens HJJ, Lie KI, Janse MJ, eds. The conduction system of the heart: Structure, function, and clinical implications. Philadelphia, PA: Lea & Febiger, 1976:55–81.

    Google Scholar 

  35. Waller BF, Gering LE, Branyas NA, Slack JD. Anatomy, histology, and pathology of the cardiac conduction system: Part I. Clin Cardiol 1993;16:249–52.

    Article  PubMed  CAS  Google Scholar 

  36. Boyett MR, Honjo H, Kodama I, et al. The sinoatrial node: Cell size does matter. Circ Res 2007;101:e81–2.

    Article  PubMed  CAS  Google Scholar 

  37. Garson AJ, Bricker JT, Fisher DJ, Neish SR, eds. The science and practice of pediatric cardiology. Volume I. Baltimore, MD: Williams & Williams, 1998:141–3.

    Google Scholar 

  38. Hucker WJ, Fedorov VV, Foyil KV, Moazami N, Efimov IR. Optical mapping of the human atrioventricular junction. Circulation 2008;117:1474–7.

    Article  PubMed  Google Scholar 

  39. Li JL, Greener ID, Inada S, et al. Computer three-dimensional reconstruction of the atrioventricular node. Circ Res 2008;102:975–85.

    Article  PubMed  CAS  Google Scholar 

  40. Becker AE, Anderson RH. The morphology of the human atrioventricular junctional area. In: Wellens HJJ, Lie KI, Janse MJ, eds. The conduction system of the heart: Structure, function, and clinical implications. Philadelphia, PA: Lea & Febiger, 1976:263–86.

    Google Scholar 

  41. Aschoff L. Referat uber die herzstorungen in ihren bezeihungen zu den spezifischen muskelsystem des herzens. Verh Dtsch Ges Pathol 1910;14:3–35.

    Google Scholar 

  42. Monckeberg JG. Beitrage zur normalen und pathologischen anatomie des herzens. Verh Dtsch Ges Pathol 1910;14:64–71.

    Google Scholar 

  43. Hucker WJ, McCain ML Laughner JI, Iaizzo PA, Efimov IR. Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anat Rec (Hoboken) 2008;291:204–15.

    Article  Google Scholar 

  44. Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE. Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol 1995;6:813–22

    Google Scholar 

  45. Zhang Y, Bharati S, Mowrey KA, Shaowei Z, Tchou PJ, Mazgalev TN. His electrogram alternans reveal dual-wavefront inputs into and longitudinal dissociation within the bundle of His. Circulation 2001;104:832–8.

    Article  PubMed  CAS  Google Scholar 

  46. Bharati S, Levine M, Huang SK, et al. The conduction system of the swine heart. Chest 1991;100:207–12.

    Article  PubMed  CAS  Google Scholar 

  47. Anderson RH, Becker AE, Brechenmacher C, Davies MJ, Rossi L. The human atrioventricular junctional area. A morphological study of the A–V node and bundle. Eur J Cardiol 1975;3:11–25.

    PubMed  CAS  Google Scholar 

  48. Frink RJ, Merrick B. The sheep heart: Coronary and conduction system anatomy with special reference to the presence of an os cordis. Anat Rec 1974;179:189–200.

    Article  PubMed  CAS  Google Scholar 

  49. El-Sherif N, Lekieffre J. Practical management of cardiac arrhythmias. Armonk, NY: Futura Publishing Co., 1997:xv, 348.

    Google Scholar 

  50. Shrivastav M, Iaizzo P. Discrimination of ischemia and normal sinus rhythm for cardiac signals using a modified k means clustering algorithm. Conf Proc IEEE Eng Med Biol Soc 2007;3856–9.

    Google Scholar 

  51. Webster JG. Bioinstrumentation. Hoboken, NJ: John Wiley & Sons,2004:xiv, 383.

    Google Scholar 

  52. Shrivastav M. Methods of ambulatory detection and treatment of cardiac arrhythmias using implantable cardioverter-defibrillators. Biomed Instrum Technol 1999;33:505–21.

    PubMed  CAS  Google Scholar 

  53. Webster JG, ed. Design of cardiac pacemakers. Piscataway, NJ: IEEE Press, 1995.

    Google Scholar 

  54. Sahakian AV, Peterson MS, Shkurovich S, et al. A simultaneous multichannel monophasic action potential electrode array for in vivo epicardial repolarization mapping. IEEE Trans Biomed Eng 2001;48:345–53.

    Article  PubMed  CAS  Google Scholar 

  55. Shenasa M, Borggrefe M, Breithardt G, eds. Cardiac mapping. 2nd ed. New York, NY: Futura, 2003:xxiii, 784.

    Google Scholar 

  56. Shrivastav M, Iaizzo PA. In vivo cardiac monophasic action potential recording using electromyogram needles. Proceedings of the IEEE Biomedical Circuits and Systems Conference. London, United Kingdom, 2006.

    Google Scholar 

  57. Schilling RJ, Kadish AH, Peters NS, Goldberger J, Davies DW. Endocardial mapping of atrial fibrillation in the human right atrium using a non-contact catheter. Eur Heart J 2000;21:550–64.

    Article  PubMed  CAS  Google Scholar 

  58. Becker AE, Anderson RH. Proximal atrioventricular bundle, atrioventricular node, and distal atrioventricular bundle are distinct anatomic structures with unique histological characteristics and innervation—Response. Circulation 2001;103:e30–1.

    PubMed  CAS  Google Scholar 

  59. Bharati S. Anatomy of the atrioventricular conduction system—Response. Circulation 2001;103:e63–4.

    PubMed  CAS  Google Scholar 

  60. Magalev TN, Ho SY, Anderson RH. Special report: Anatomic-electrophysiological correlations concerning the pathways for atrioventricular conduction. Circulation 2001;103:2660–7.

    Google Scholar 

  61. Kucera JP, Rudy Y. Mechanistic insights into very slow conduction in branching cardiac tissue—A model study. Circulation Res 2001;89:799–806.

    Article  PubMed  CAS  Google Scholar 

Additional Reference Texts

  • Mohrman DE, Heller LJ, eds. Cardiovascular physiology. 5th ed. New York, NY: Langer Medical Books/McGraw-Hill, 2003.

    Google Scholar 

  • Wellens HJJ, Lie KI, Janse MJ, eds. The conduction system of the heart: Structure, function, and clinical implications. Philadelphia, PA: Lea & Febiger, 1976.

    Google Scholar 

  • Alexander RW, Schlant RC, Fuster V, eds. Hurst’s: The heart: Arteries and veins. 9th ed. New York, NY: McGraw-Hill, 1998.

    Google Scholar 

  • Katz AM, ed. Physiology of the heart. 3rd ed. Philadelphia, PA: Lippincott, Williams, and Wilkins, 2001.

    Google Scholar 

  • Tortora GJ, Grabowski SR, eds. Principles of anatomy and physiology. 9th ed. New York, NY: John Wiley & Sons, Inc., 2000.

    Google Scholar 

Download references

Acknowledgments

Medtronic Training and Education and Gorinka Shrivastav for graphical support; Rebecca Rose, DVM, Louanne Cheever, and Alexander Hill, PhD of Medtronic for the histological sectioning and staining; Anthony Weinhaus, PhD for additional details on atrial anatomy; Igor Efimov, PhD from Washington University in St. Louis, MO for 3D images of the human atrioventricular node.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Laske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laske, T.G., Shrivastav, M., Iaizzo, P.A. (2009). The Cardiac Conduction System. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics