Skip to main content

Transgenic and Gene Knockout Analysis of Diabetic Neuropathy

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

  • 2062 Accesses

Abstract

Neuropathy is one of the major complications of long-term diabetes. Despite many years of intense research by a number of laboratories, the pathogenetic mechanisms of this disease are still not completely understood. Likely contributing factors of this disease include the polyol pathway, nonenzymatic glycation, protein kinase-C activation, hexosamine pathway, and overproduction of superoxide by the mitochondrial respiratory chain. Their roles in the pathogenesis of diabetic neuropathy are mainly supported by pharmacological studies, which often have inherent problem of uncertain drug specificity and availability. This article reviews the recent studies using transgenic and gene knockout mice to examine the role of polyol pathway, nonenzymatic glycation, poly(adenosine 5′-diphosphate [ADP]-ribose) polymerase, and neurofilaments in diabetic neuropathy. The results of these studies confirm some of the findings from drug experiments and also settle some controversies. These genetic studies avoid some of the problems of using chemical inhibitors, but they also have inherent problems of their own. The prospect of using more sophisticated inducible transgene expression, and conditional gene ablation technologies to circumvent these problems are discussed. It is expected that the number of genetically engineered mutant mice will increase exponentially in the near future and some of them will undoubtedly contribute to our understanding of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 1966;151:209–210.

    Article  PubMed  CAS  Google Scholar 

  2. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 2002;50:325–392.

    PubMed  CAS  Google Scholar 

  3. King RH. The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol Pathol 2001;54:400–408.

    PubMed  CAS  Google Scholar 

  4. Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 2002;50:37–57.

    PubMed  CAS  Google Scholar 

  5. Cameron NE, Cotter MA. Effects of protein kinase Cbeta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev 2002;18:315–323.

    Article  PubMed  CAS  Google Scholar 

  6. Eichberg J. Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol 2002;50:61–82.

    PubMed  CAS  Google Scholar 

  7. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.

    Article  PubMed  CAS  Google Scholar 

  8. Lee AY, Chung SK, Chung SS. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc Natl Acad Sci USA 1995;92:2780–2784.

    Article  PubMed  CAS  Google Scholar 

  9. Leitges M, Schmedt C, Guinamard R, et al. Immunodeficiency in protein kinase cbetadeficient mice. Science 1996;273:788–791.

    Article  PubMed  CAS  Google Scholar 

  10. Williamson JR, Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993;42:801–813.

    Article  PubMed  CAS  Google Scholar 

  11. Sarges R, Oates PJ. Aldose reductase inhibitors: recent developments. Prog Drug Res 1993;40:99–161.

    PubMed  CAS  Google Scholar 

  12. Pfeifer MA, Schumer MP, Gelber DA. Aldose reductase inhibitors: the end of an era or the need for different trial designs? Diabetes 1997;46(Suppl 2):S82–S89.

    PubMed  CAS  Google Scholar 

  13. Tsai SC, Burnakis TG. Aldose reductase inhibitors: an update. Ann Pharmacother 1993;27:751–754.

    PubMed  CAS  Google Scholar 

  14. Cameron NE, Cotter MA. Dissociation between biochemical and functional effects of the aldose reductase inhibitor, ponalrestat, on peripheral nerve in diabetic rats. Br J Pharmacol 1992; 107:939–944.

    PubMed  CAS  Google Scholar 

  15. Yamaoka T, Nishimura C, Yamashita K, et al. Acute onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. Diabetologia 1995;38:255–261.

    Article  PubMed  CAS  Google Scholar 

  16. Yagihashi S, Yamagishi S, Wada R, et al. Galactosemic neuropathy in transgenic mice for human aldose reductase. Diabetes 1996;45:56–59.

    Article  PubMed  CAS  Google Scholar 

  17. Yagihashi S, Yamagishi SI, Wada RR, et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 2001;124:2448–2458.

    Article  PubMed  CAS  Google Scholar 

  18. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998;47:859–866.

    Article  PubMed  CAS  Google Scholar 

  19. Frank RN. Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. Am J Ophthalmol 2002;133:693–698.

    Article  PubMed  CAS  Google Scholar 

  20. Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 2000;14:439–447.

    PubMed  CAS  Google Scholar 

  21. Kim H, Sasaki T, Maeda K, Koya D, Kashiwagi A, Yasuda H. Protein kinase Cbeta selective inhibitor LY333531 attenuates diabetic hyperalgesia through ameliorating cGMP level of dorsal root ganglion neurons. Diabetes 2003;52:2102–2109.

    Article  PubMed  CAS  Google Scholar 

  22. Yamagishi S, Uehara K, Otsuki S, Yagihashi S. Differential influence of increased polyol pathway on protein kinase C expressions between endoneurial and epineurial tissues in diabetic mice. J Neurochem 2003;87:497–507.

    Article  PubMed  CAS  Google Scholar 

  23. Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 1997;46(Suppl 2):S31–S37.

    PubMed  CAS  Google Scholar 

  24. Low PA, Lagerlund TD, McManis PG. Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int Rev Neurobiol 1989;31:355–438.

    PubMed  CAS  Google Scholar 

  25. Malik RA, Williamson S, Abbott C, et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial [see comments]. Lancet 1998;352:1978–1981.

    Article  PubMed  CAS  Google Scholar 

  26. Song Z, Fu DT, Chan YS, Leung S, Chung SS, Chung SK. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 2003;23:638–647.

    Article  PubMed  CAS  Google Scholar 

  27. Ho HT, Chung SK, Law JW, et al. Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Mol Cell Biol 2000;20:5840–5846.

    Article  PubMed  CAS  Google Scholar 

  28. Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetesinduced oxidative stress. J Am Soc Nephrol 2003;14:S233–S236.

    Article  PubMed  CAS  Google Scholar 

  29. Tilton RG, Chang K, Nyengaard JR, van den EM, Ido Y, Williamson JR. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes 1995;44:234–242.

    Article  PubMed  CAS  Google Scholar 

  30. Obrosova IG, Fathallah L, Lang HJ, Greene DA. Evaluation of a sorbitol dehydrogenase inhibitor on diabetic peripheral nerve metabolism: a prevention study. Diabetologia 1999;42:1187–1194.

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Williamson JR, Ido Y. Effect of sorbitol dehydrogenase inhibition on experimental diabetic autonomic neuropathy. J Neuropathol Exp Neurol 1998;57:1175–1189.

    PubMed  CAS  Google Scholar 

  32. Lee FK, Chung SK, Chung SS. Aberrant mRNA splicing causes sorbitol dehydrogenase deficiency in C57BL/LiA mice. Genomics 1997;46:86–92.

    Article  PubMed  CAS  Google Scholar 

  33. Ng TF, Lee FK, Song ZT, et al. Effects of sorbitol dehydrogenase deficiency on nerve conduction in experimental diabetic mice [published erratum appears in Diabetes 1998 Aug;47(8):1374]. Diabetes 1998;47:961–966.

    Article  PubMed  CAS  Google Scholar 

  34. Cameron NE, Tuck Z, McCabe L, Cotter MA. Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 2001;44:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  35. Kishi Y, Schmelzer JD, Yao JK, et al. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes 1999;48:2045–2051.

    Article  PubMed  CAS  Google Scholar 

  36. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000;49:1006–1015.

    Article  PubMed  CAS  Google Scholar 

  37. Cerami A, Vlassara H, Brownlee M. Role of advanced glycosylation products in complications of diabetes. Diabetes Care 1988;11(Suppl 1):73–79.

    PubMed  Google Scholar 

  38. Ryle C, Donaghy M. Non-enzymatic glycation of peripheral nerve proteins in human diabetics. J Neurol Sci 1995;129:62–68.

    Article  PubMed  CAS  Google Scholar 

  39. Cameron NE, Cotter MA, Dines K, Love A. Effects of aminoguanidine on peripheral nerve function and polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia 1992;35:946–950.

    Article  PubMed  CAS  Google Scholar 

  40. Yagihashi S, Kamijo M, Baba M, Yagihashi N, Nagai K. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes 1992;41:47–52.

    Article  PubMed  CAS  Google Scholar 

  41. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003;419:31–40.

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt AM, Hasu M, Popov D, et al. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci USA 1994;91:8807–8811.

    Article  PubMed  CAS  Google Scholar 

  43. Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 2002;1:1–15.

    Article  PubMed  CAS  Google Scholar 

  44. Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001;50:2792–2808.

    Article  PubMed  CAS  Google Scholar 

  45. Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 1996;97:238–243.

    PubMed  CAS  Google Scholar 

  46. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 2001;17:436–443.

    Article  PubMed  CAS  Google Scholar 

  47. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 1995;46:223–234.

    Article  PubMed  CAS  Google Scholar 

  48. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med 2002;251:87–101.

    Article  PubMed  CAS  Google Scholar 

  49. Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001;17:189–212.

    Article  PubMed  CAS  Google Scholar 

  50. Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 2001;477:97–110.

    PubMed  CAS  Google Scholar 

  51. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999;96:13,978-13,982.

    Google Scholar 

  52. Liaudet L. Poly(adenosine 5′-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness. Curr Opin Clin Nutr Metab Care 2002;5:175–184.

    Article  PubMed  CAS  Google Scholar 

  53. Yu SW, Wang H, Poitras MF, et al. Mediation of Poly(ADP-Ribose) Polymerase-1-Dependent Cell Death by Apoptosis-Inducing Factor. Science 2002;297:259–263.

    Article  PubMed  CAS  Google Scholar 

  54. Garcia SF, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001;7:108–113.

    Article  Google Scholar 

  55. Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C. Rapid Reversal of the Diabetic Endothelial Dysfunction by Pharmacological Inhibition of Poly(ADP-Ribose) Polymerase. Circ Res 2001;89:684–691.

    Article  PubMed  CAS  Google Scholar 

  56. Obrosova IG, Li F, Abatan OI, et al. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 2004;53:711–720.

    Article  PubMed  CAS  Google Scholar 

  57. Obrosova IG, Pacher P, Szabo C, et al. Aldose Reductase Inhibition Counteracts Oxidative-Nitrosative Stress and Poly(ADP-Ribose) Polymerase Activation in Tissue Sites for Diabetes Complications. Diabetes 2005;54:234–242.

    Article  PubMed  CAS  Google Scholar 

  58. Al Chalabi A, Miller CC. Neurofilaments and neurological disease. Bioessays 2003;25:346–355.

    Article  CAS  Google Scholar 

  59. Liu Q, Xie F, Siedlak SL, et al. Neurofilament proteins in neurodegenerative diseases. Cell Mol Life Sci 2004;61:3057–3075.

    Article  PubMed  CAS  Google Scholar 

  60. Fernyhough P, Gallagher A, Averill SA, et al. Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 1999;48:881–889.

    Article  PubMed  CAS  Google Scholar 

  61. Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. Int Rev Neurobiol 2002;50:115–144.

    Article  PubMed  CAS  Google Scholar 

  62. Schmidt RE, Dorsey D, Parvin CA, Beaudet LN, Plurad SB, Roth KA. Dystrophic axonal swellings develop as a function of age and diabetes in human dorsal root ganglia. J Neuropathol Exp Neurol 1997;56:1028–1043.

    PubMed  CAS  Google Scholar 

  63. Scott JN, Clark AW, Zochodne DW. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 1999;122(Pt11):2109–2118.

    Article  PubMed  Google Scholar 

  64. Medori R, Autilio-Gambetti L, Monaco S, Gambetti P. Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci USA 1985;82:7716–7720.

    Article  PubMed  CAS  Google Scholar 

  65. Tu PH, Robinson KA, de Snoo F, et al. Selective degeneration fo Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J Neurosci 1997;17:1064–1074.

    PubMed  CAS  Google Scholar 

  66. Zochodne DW, Sun HS, Cheng C, Eyer J. Accelerated diabetic neuropathy in axons without neurofilaments. Brain 2004;127:2193–2200.

    Article  PubMed  Google Scholar 

  67. Bockamp E, Maringer M, Spangenberg C, et al. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002;11:115–132.

    PubMed  CAS  Google Scholar 

  68. Lernbecher T, Muller U, Wirth T. Distinct NF-kappa B/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature 1993;365:767–770.

    Article  PubMed  CAS  Google Scholar 

  69. Mezzano S, Aros C, Droguett A, et al. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant 2004;19:2505–2512.

    Article  PubMed  CAS  Google Scholar 

  70. Purves TD, Tomlinson DR. Diminished transcription factor survival signals in dorsal root ganglia in rats with streptozotocin-induced diabetes. Ann NY Acad Sci 2002;973:472–476.

    PubMed  CAS  Google Scholar 

  71. Ramana KV, Friedrich B, Srivastava S, Bhatnagar A, Srivastava SK. Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes 2004;53:2910–2920.

    Article  PubMed  CAS  Google Scholar 

  72. Cui C, Wani MA, Wight D, Kopchick J, Stambrook PJ. Reporter genes in transgenic mice. Transgenic Res 1994;3:182–194.

    Article  PubMed  CAS  Google Scholar 

  73. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002;4:235–260.

    Article  PubMed  CAS  Google Scholar 

  74. Hadjantonakis AK, Nagy A. The color of mice: in the light of GFP-variant reporters. Histochem Cell Biol 2001;115:49–58.

    PubMed  CAS  Google Scholar 

  75. Brendza RP, O’Brien C, Simmons K, et al. PDAPP; YFP double transgenic mice: a tool to study amyloid-beta associated changes in axonal, dendritic, and synaptic structures. J Comp Neurol 2003;456:375–383.

    Article  PubMed  CAS  Google Scholar 

  76. Chen YS, Chung SSM, Chung SK. Noninvasive Monitoring of Diabetes-Induced Cutaneous Nerve Fiber Loss and Hypoalgesia in thy1-YFP Transgenic Mice. Diabetes 2005;54(11):3112–3118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chung, S.K., Chung, S.S.M. (2007). Transgenic and Gene Knockout Analysis of Diabetic Neuropathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics