Skip to main content

Genomics of Diabetic Neuropathy

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

Abstract

Diabetes is associated with considerable mortality and morbidity due to the long term complications of the disease. Diabetic neuropathy is a major complication of diabetes and there is increasing evidence to implicate genetic factors together with elevated blood glucose in the susceptibility to this condition. The majority of the studies on the genomics of diabetic neuropathy have focussed on the gene coding for aldose reductase (AKR1B1). Polymorphisms of this gene have been associated with neuropathy. However, the Human Genome Project is likely to provide many more novel candidate genes that play a key role in the pathogenesis of this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greene DA, Sima AF, Pfeifer MA, Albers JW. Diabetic neuropathy. Annu Rev Med 41;303–317, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Part 2. Diabetes Care 1978;1:252–294.

    Google Scholar 

  3. Vinik AI, Liuzze FJ, Holland MT, Stansberry KB, LeBean JM, Coleb LB. Diabetic neuropathies. Diabetes Care 1992;15:1926–1975.

    Article  PubMed  CAS  Google Scholar 

  4. Sima AAF. Pathological definition and evaluation of diabetic neuropathy and clinical correlations. Can J Neurol Sci 1994;21(Suppl4):513–517.

    Google Scholar 

  5. Sima AA, Cherian PV. Neuropathology of diabetic neuropathy and its correlations with neurophysiology. Clin Neurosci 1997;4:359–364.

    PubMed  CAS  Google Scholar 

  6. Thomas PK. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Diabetes 1997;46(Suppl 2):S54–S57.

    PubMed  CAS  Google Scholar 

  7. Duby JJ, Campbell RK, Setter SM, White JR, Rasmussen KA. Diabetic neuropathy: an intensive review. Am J Health Syst Pharm 2004;61:160–173.

    PubMed  CAS  Google Scholar 

  8. Greene DA, Sima AAF, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care 1992;15:1902–1925.

    Article  PubMed  CAS  Google Scholar 

  9. Annunzio d’ G, Malvezzi F, Vitali L, et al. A 3–19 year follow up study on diabetic retinopathy in patients diagnosed in childhood and treated with conventional therapy. Diabetic Med 1997;14:951–955.

    Article  PubMed  Google Scholar 

  10. D’Angio CT, Ambati J, Phelps DL. Do urinary levels of vascular endothelial growth factors predict proliferative retinopathy? Curr Eye Res 2001;22:90.

    Article  PubMed  CAS  Google Scholar 

  11. Kalter-Leibovici O, Leibovici L, Loya N, et al. The development and progression of diabetic retinopathy in type 1 diabetic patients: a cohort study. Diabetic Med 1997;14:858–866.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen RA, Hennekens CH, Christen WG, et al. Determinants of retinopathy progression in type 1 diabetes mellitus. Am J Med 1999;107:45–51.

    Article  PubMed  CAS  Google Scholar 

  13. DCCT Research Group. The absence of a glycaemic threshold for the development of long term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996;45:1289–1298.

    Article  Google Scholar 

  14. Forst T, Kunt T, Pf utzner A, Beyeer J, Wahren J. New aspects on biological activity of C-peptide in IDDM patients. Exp Clin Enocriol 1998;106:270–276.

    Article  CAS  Google Scholar 

  15. Rich SS, Freedman BI, Bowden DW. Genetic epidemiology of diabetic complications. Diabetic Revs 1997;5:165–173.

    Google Scholar 

  16. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. New Engl J Med 1993;329;977–986.

    Article  Google Scholar 

  17. DCCT Research Group. The relationship of glycaemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes controls and complications trial. Diabetes 1995;44:968–983.

    Article  Google Scholar 

  18. Krolewski AS, Doria A, Magre J, Warram JH, Housman D. Molecular genetic approaches to the identification of genes involved in the development of nephropathy in insulindependent diabetes mellitus. J Am Soc Nephrol 1992;3(4 Suppl):S9–17.

    Google Scholar 

  19. Krolewski AS. Genetics of diabetic nephropathy: evidence for major and minor gene effects. Kidney Int 1999;55:1582–1596.

    Article  PubMed  CAS  Google Scholar 

  20. DCCT Research Group. Clustering of long term complications in families with diabetes in the diabetes control and complications trial. Diabetes 1997;46:1829–1839.

    Article  Google Scholar 

  21. Connolly SB, Sadlier D, Kieran NE, Doran P, Brady HR. Transcriptome profiling and the pathogenesis of diabetic complications. J Am Soc Nephrol 2003;14(Suppl 3):S279–S283.

    Article  PubMed  CAS  Google Scholar 

  22. Antonellis A, Rogus JJ, Canani LH, et al. A method for developing high-density SNP maps and its application at the type 1 angiotensin II receptor (AGTR1) locus. Genomics 2002;79:326–332.

    Article  PubMed  CAS  Google Scholar 

  23. Imperatore G, Hanson RL, Pettitt DJ, Kobes S, Bennett PH, Knowler WC. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes 1998;47:821–830.

    Article  PubMed  CAS  Google Scholar 

  24. Freedman BI, Rich SS, Yu H, Roh BH, Bowden DW. Linkage heterogeneity of end-stage renal disease on human chromosome 10. Kidney Int 2002;62:770–774.

    Article  PubMed  CAS  Google Scholar 

  25. Hunt SC, Hasstedt SJ, Coon H, Camp NJ, Cawthon RM, Wu LL, Hopkins PN. Linkage of creatinine clearance to chromosome 10 in Utah pedigrees replicates a locus for end-stage renal disease in humans and renal failure in the fawn-hooded rat. Kidney Int 2002;62:1143–1148.

    Article  PubMed  CAS  Google Scholar 

  26. Vardarli I, Baier LJ, Hanson RL, et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int 2002;62:2176–2183.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka N, Babazono T, Saito S, et al. Association of solute carrier family 12 (sodium/ chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms. Diabetes 2003;52:2848–2853.

    Article  PubMed  CAS  Google Scholar 

  28. Rogus JJ, Warram JH, Krolewski AS. Genetic studies of late diabetic complications: the over-looked importance of diabetes duration before complication onset. Diabetes 2002;51(6):1655–1662.

    Article  PubMed  CAS  Google Scholar 

  29. Williamson JR, Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993;42:801–813.

    Article  PubMed  CAS  Google Scholar 

  30. Stevens MJ, Dannanberg J, Feldman EL, et al. The linked roles of nitric oxide, aldose reductase, and (Na+, K+)-ATPase in the slowing bof nerve conduction in the streptozotocin diabetic rat. J Clin Invest 1994;94:853–859.

    Article  PubMed  CAS  Google Scholar 

  31. Cameron NE, Cotter MA, Hohman TC. Interactions between essential fatty acid, prostanoid, polyol pathway and nitric oxide mechanisms in the neurovascular deficit of diabetic rats. Diabetologia 1996;39:172–182.

    Article  PubMed  CAS  Google Scholar 

  32. Cameron NE, Cotter MA, Basso M, Hohman TC. Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia 1997;40:271–281.

    Article  PubMed  CAS  Google Scholar 

  33. Cameron NE, Cotter MA, Jack AM, Basso MD, Hohman TC. Protein kinase C effects on nerve fuction, perfusion, Na+, K+-ATPase activity and glutathione contents in diabetic rats. Diabetologia 1999;42:1120–1130.

    Article  PubMed  CAS  Google Scholar 

  34. Keogh RJ, Dunlop ME, Larkins RG. Effect of inhibition of aldose reductase on glucose of flux, diacylglycerol formation, protein kinase C, and phospholipase A2 activation. Metabolism 1997;46:41–47.

    Article  PubMed  CAS  Google Scholar 

  35. Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 2004;53:1851–1856.

    Article  PubMed  CAS  Google Scholar 

  36. Yagihashi S, Yamagishi SI, Wada Ri R, et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 2001;124(Pt 12):2448–2458.

    Article  PubMed  CAS  Google Scholar 

  37. Song Z, Fu DT, Chan YS, Leung S, Chung SS, Chung SK. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 2003;23(4):638–647.

    Article  PubMed  CAS  Google Scholar 

  38. Obrosova IG. How does glucose generate oxidative stress in peripheral nerve? Int Rev Neurobiol 2002;50:3–35.

    Article  PubMed  CAS  Google Scholar 

  39. Van der Jagt DL, Robinson B, Taylor KK, Hunsaker LA. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal and diabetic complications. J Biol Chem 1992;267:4364–4369.

    Google Scholar 

  40. Van der Jagt DL, Kolb NS, Van der Jagt TJ, et al. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta 1995;1249:117–126.

    Google Scholar 

  41. Inazu N, Nagashima Y, Satoh T, Fugi T. Purification and properties of six aldo-keto reductases from rat adrenal gland. J Biochem 1994;115:991–999.

    PubMed  CAS  Google Scholar 

  42. Bohren KM, Bullock B, Gabbays KH. The aldo-keto reductase superfamily. J Bio Chem 1989;264:9547–9551.

    CAS  Google Scholar 

  43. Chung S, La Mendola J. Cloning and sequence determination of human placental aldose reductase gene. J Biol Chem 1989;264:14,775–14,777.

    Google Scholar 

  44. Nishimura C, Matsuura Y, Kokai Y, et al. Cloning and expression of human aldose reductase. J Biol Chem 1990;265:9788–9792.

    PubMed  CAS  Google Scholar 

  45. Graham A, Brown L, Hedge PJ, Gammack AJ, Markham AF. Structure of the human aldose reductase gene. J Biol Chem 1991;266:6872–6877.

    PubMed  CAS  Google Scholar 

  46. Bateman JB, Kojis T, Heinzmann C, et al. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13. Genomics 1993;17:560–565.

    Article  PubMed  CAS  Google Scholar 

  47. Ko BCB, Ruepp B, Bohren KM, Gabbay KH, Chung SSM. Identification and characterisation of multiple osmotic response sequences in the human aldose reductase gene. J Biol Chem 1997;272:16,431-16,437.

    Google Scholar 

  48. Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao R. NFAT, a constitutively expressed nuclear NFAT protein that does not co-operate with Fos and Jun. Biochemistry 1999;96:7214–7219.

    CAS  Google Scholar 

  49. Iwata T, Sato S, Jimenez J, et al. Osmotic response element is required for the induction of aldose reductase by tumour necrosis factor-alpha. J Biol Chem 1999;274:7993–8001.

    Article  PubMed  CAS  Google Scholar 

  50. Aida K, Tawata M, Ikegishi Y, Onaya T. Induction of rat aldose reductase gene transcription is mediated through cis-element, osmotic response element (ORE): increased synthesis and/or activation by phosphorylation of ORE-binding protein is a key step. Endocrinology 1999;140:609–617.

    Article  PubMed  CAS  Google Scholar 

  51. Hodgkinson AD, Sondergaard KL, Yang B, Cross DF, Millward BA, Demaine AG. Aldose reductase expression is induced by hyperglycaemia in diabetic nephropathy. Kidney Int 2001;60:211–218.

    Article  PubMed  CAS  Google Scholar 

  52. Henry DN, Frank RN, Hootman SR, Rood SE, Helig CW, Busik JV. Glucose-specific regulation of aldose reductase in human retinal pigment epithelial cells in vitro. Invest Opthal Vis Sci 2000;41:1554–1560.

    CAS  Google Scholar 

  53. Maekawa K, Tanimoto T, Okada S, Susuki T, Suzuki T, Yabe-Nichimura C. Expression of aldose reductase and sorbitol dehydrogenase genes in Schwann cells isolated from rats: effects of high glucose and osmotic stress. Mol Brain Res 2001;87:251–256.

    Article  PubMed  CAS  Google Scholar 

  54. Patel A, Hibberd ML, Millward BA, Demaine AG. Chromosome 7q35 and susceptibility to diabetic microvascular complications. J Diabetic Compl 1996;10:62–67.

    Article  CAS  Google Scholar 

  55. Li Q, Xie P, Huang J, Gu Y, Zeng W, Song H. Polymorphisms and functions of the aldose reductase gene 5′regulatory region in Chinese patients with type 2 diabetes mellitus. Chin Med J 2002;115:209–213.

    PubMed  CAS  Google Scholar 

  56. Ko BCB, Lam KSL, Wat NMS, Chung SSM. An (A–C)n dinucleotide repeat polymorphic marker at the 5′end of the aldose reductase gene is associated with early onset diabetic retinopathy in NIDDM patients. Diabetes 1995;44:727–732.

    Article  PubMed  CAS  Google Scholar 

  57. Heesom AE, Hibberd ML, Millward BA, Demaine AG. Polymorphisms in the 5′end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type 1 diabetes. Diabetes 1997;46:287–291.

    Article  PubMed  CAS  Google Scholar 

  58. Demaine A, Cross D, Millward A. Polymorphisms of the aldose reductase gene and susceptibility to retinopathyin type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000;41:4064–4068.

    PubMed  CAS  Google Scholar 

  59. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Length rather than a specific allele of dinucleotide repeat in the 5′ upstream region of the aldose reductase gene is associated with diabetic retinopathy. Diabet Med 1999;16:1044–1047.

    Article  PubMed  CAS  Google Scholar 

  60. Ikegishi Y, Tawata M, Aida K, Onaya T. Z-4 allele upstream of the aldose reductase gene is associated with proliferative retinopathy in Japanese patients with NIDDM, and elevated luciferase gene transcription in vitro. Life Sci 1999;65:2061–2070.

    Article  PubMed  CAS  Google Scholar 

  61. Lee SC, Wang Y, Ko GT, et al. Association of retinopathy with a microsatellite at 5′end of the aldose reductase gene in Chinese patients with late-onset type 2 diabetes. Opthal Genetic 2001;22:63–67.

    Article  CAS  Google Scholar 

  62. Kao YL, Donaghue K, Chan A, Knight J, Silink M. A novel polymorphism in the aldose reductase gene promoter region is strongly associated with diabetic retinopathyin adolescents with type 1 diabetes. Diabetes 1999;48:1338–1340.

    Article  PubMed  CAS  Google Scholar 

  63. Kao YL, Donaghue K, Chan A, Knight J, Silink M. An aldose reductase intragenic polymorphism associated with diabetic retinopathy. Diabetes Res Clin Prac 1999;46:155–160.

    Article  CAS  Google Scholar 

  64. Maeda S, Haneda M, Yasuda H, et al. Diabetic nephropathy is not associated with the dinucleotide repeat polymorphism upstream of the aldose reductase (ALR2) gene but with erythrocyte aldose reductase content in Japanese subjects with type 2 diabetes. Diabetes 1999;48:420–422.

    Article  PubMed  CAS  Google Scholar 

  65. Moczulski DK, Burak W, Doria A, Zukowska-Szczechowska E, Warram JH, Grzeszczak W. The role of aldose reductase in the susceptibility to diabetic nephropathy in type II (noninsulin dependent) diabetes mellitus. Diabetologia 1999;42:94–97.

    Article  PubMed  CAS  Google Scholar 

  66. Neamat-Allah M, Feeney SA, Savage DA, et al. Analysis of the association between diabetic nephropathy and polymorphisms in the aldose reductase gene in type 1 and type 2 diabetes mellitus. Diabet Med 2001;18:906–914.

    Article  PubMed  CAS  Google Scholar 

  67. Sivenius K, Niskanen L, Pihlajamaki J, Laakso M, Partanen J, Uusitupa M. Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes care 2004;27:2021–2026.

    Article  PubMed  CAS  Google Scholar 

  68. Shah VO, Dorin RI, Braun SM, Zager PG. Aldose reductase gene expression is increased in diabetic nephropathy. J Clin Endo Metab 1997;82:2294–2298.

    Article  CAS  Google Scholar 

  69. Shah VO, Scavini M, Nikolic J, et al. Z-2 microsatellite allele is linked to increased expression of the aldose reductase gene in diabetic nephropathy. J Clin Endo Metab 1998;83:2886–2891.

    Article  CAS  Google Scholar 

  70. Yang BM, Millward A, Demaine A. Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications. Biochm Biophys Acta 2003;1639:1–7.

    CAS  Google Scholar 

  71. Araki SI, Daniel PK, Ng K. Identification of a common risk haplotype for diabetic nephropathy at the protein kinase C-β1 (PKCB1) gene locus. J Am Soc Nephrol 2003;14:2015–2024.

    Article  PubMed  CAS  Google Scholar 

  72. Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci 1991;88:11,555-11,558.

    Article  Google Scholar 

  73. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 1991;40:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  74. Misur I, Zarkovic K, Barada A, Batelja L, Milicevic Z, Turk Z. Advanced glycation endproducts in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol 2004;41:158–166.

    Article  PubMed  CAS  Google Scholar 

  75. Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 2001;107:247–254.

    Article  PubMed  CAS  Google Scholar 

  76. Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001;50:2792–2808.

    Article  PubMed  CAS  Google Scholar 

  77. Bierhaus A, Haslbeck KM, Humpert PM, et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 2004;114:1741–1751.

    Article  PubMed  CAS  Google Scholar 

  78. Haslbeck KM, Bierhaus A, Erwin S, et al. Receptor for advanced glycation endproduct (RAGE)-mediated nuclear factor-kappaB activation in vasculitic neuropathy. Muscle Nerve 2004;29:853–860.

    Article  PubMed  CAS  Google Scholar 

  79. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  80. Gröne HJ. Angiogenesis and vascular endothelial growth factor (VEGF): is it relevant in renal patients? Nephrology Dialysis Transplantation 1995;10:761–763.

    Google Scholar 

  81. Williams B. Factors regulating the expression of vascular permeability/vascular endothelial growth factor by human vascular tissue. Diabetologia 1997;40(Suppl 2):118–120.

    Article  Google Scholar 

  82. Shweki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845.

    Article  Google Scholar 

  83. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159–162.

    Article  PubMed  CAS  Google Scholar 

  84. Isner JM, Ropper A, Hirst K. VEGF gene transfer for diabetic neuropathy. Hum Gene Ther 2001;12:1593–1594.

    PubMed  CAS  Google Scholar 

  85. Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001;107:1083–1092.

    Article  PubMed  CAS  Google Scholar 

  86. Yang BM, Cross DF, Ollerenshaw M, Millward BA, Demaine AG. Polymorphisms of vascular endothelial growth factor and susceptibility to diabetic microvascular complications in patients with type 1 diabetes mellitus. J Diabetes Compl 2003;17:1–6.

    Article  Google Scholar 

  87. Hodgkinson AD, Millward BA, Demaine AG. Association of the p22phox component of NAD(P)H oxidase with susceptibility to diabetic nephropathy in patients with type 1 diabetes. Diabetes Care 2003;26:3111–3115.

    Article  PubMed  CAS  Google Scholar 

  88. Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW. Uncouping proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 2004;53:726–734.

    Article  PubMed  CAS  Google Scholar 

  89. Sima AA. New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol Life Sci 2003;60(11):2445–2464.

    Article  PubMed  CAS  Google Scholar 

  90. Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M. C-peptide, Na+/K(+)-ATPase, and diabetes. Exp Diabesity Res 2004;5:37–50.

    Article  PubMed  CAS  Google Scholar 

  91. Vague P, Dufayet D, Coste T, Moriscot C, Jannot MF, Raccah D. Association of diabetic neuropathy with Na/K ATPase gene polymorphism. Diabetologia 1997;40(5):506–511.

    Article  PubMed  CAS  Google Scholar 

  92. Jannot MF, Raccah D, De La Tour DD, Coste T, Vague P. Genetic nad environmental regulation of Na/K adenosine triphosphotase activity in diabetic patients. Metabolism 2002;51(3):284–291.

    Article  PubMed  CAS  Google Scholar 

  93. Leinninger GM, Vincent AM, Feldman EL. The role of growth factors in diabetic peripheral neuropathy. J Peripher Nerv Syst 2004;9:26–53.

    Article  PubMed  CAS  Google Scholar 

  94. Brewster WJ, Femyhough P, Diemel LT, Mohiuddin L, Tomlinson DR. Diabetic neuropathy, nerve growth factor and other neurotrophic factors. Trends Neurosci 1994;17:321–325.

    Article  PubMed  CAS  Google Scholar 

  95. Fernyhough P, Diemel LT, Hardy J, Brewster WJ, Mohiuddin L, Tomlinson DR. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci 1995;7:1107–1110.

    Article  PubMed  CAS  Google Scholar 

  96. Obrosova IG, Li F, Abatan OI, et al. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 2004;53:711–720.

    Article  PubMed  CAS  Google Scholar 

  97. Garcia Soriano F, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly (ADP-ribose) polymerase activation. Nat Med 2001;7:108–113.

    Article  PubMed  CAS  Google Scholar 

  98. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 2002;51(2):514–521.

    Article  PubMed  CAS  Google Scholar 

  99. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375–429.

    Article  PubMed  CAS  Google Scholar 

  100. Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002;297:259–263.

    Article  PubMed  CAS  Google Scholar 

  101. Soriano FG, Virag L, Szabo C. Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. J Mol Med 2001;79:437–448.

    Article  PubMed  CAS  Google Scholar 

  102. Berciano MT, Fernandez R, Pena E, Calle E, Villagra NT, Lafarga M. Necrosis of Schwann cells during tellurium-induced primary demyelination: DNA fragmentation, reorganization of splicing machinery, and formation of intranuclear rods of actin. Neuropathol Exp Neurol 1999;58:1234–1243.

    Article  CAS  Google Scholar 

  103. Heesom AE, Millward A, Demaine AG. Susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5′ end of the aldose reductase gene. J Neurol Neurosurg Psychiatry 1998;64:213–216.

    Article  PubMed  CAS  Google Scholar 

  104. Ng DP, Conn J, Chung SS, Larkins RG. Aldose reductase (AC)n microsatellite polymorphism and diabetic microvascular complications in Caucasian type 1 diabetes mellitus. Diabetes Res Clin Prac 2001;52:21–27.

    Article  CAS  Google Scholar 

  105. Ichikawa F, Yamada K, Ischiyama-Shigemotu S, Yuan X, Nonaka K. Association of an (A–C)n dinucleotide repeat polymorphic marker at the 5′-region of the aldose reductase gene with retinopathy but not with nephropathy or neuropathy in Japanese patients with Type 2 diabetes mellitus. Diabet Med 1999;16:744–748.

    Article  PubMed  CAS  Google Scholar 

  106. Moczulski DK, Burak W, Doria A, et al. The role of aldose reductase gene in the susceptibility to diabetic nephropathy in Type II (non-insulin-dependent) diabetes mellitus. Diabetologia 1999;42:94–97.

    Article  PubMed  CAS  Google Scholar 

  107. Olmos P, Futers S, Acosta AM, et al. (AC)23 [Z-2] polymorphism of the aldose reductase gene and fast progression of retinopathy in Chilcan type 2 diabetics. Diabetes Res Clin Pract 2000;47:169–176.

    Article  PubMed  CAS  Google Scholar 

  108. Strokov IA, Bursa TR, Drepa OI, Zotova EV, Nosikov VV, Ametov AS. Predisposing genetic factors for diabetic polyneuropathy in patients with type 1 diabetes: a populationbased case-control study. Acta Diabetol 2003;40(Supp 2):S375–S379.

    Article  PubMed  CAS  Google Scholar 

  109. Letellier C, Durou MR, Jouanolle AM, Le Gall JY, Poirier JY, Ruelland A. Serum paraoxonase activity and paraoxonase gene polymorphism in type 2 diabetic patients with or without vascular complications. Diabetes Metab 2002;28:297–304.

    PubMed  CAS  Google Scholar 

  110. Bedlack RS, Strittmatter WJ, Morgenlander JC. Apolipoprotein E and neuromuscular disease: a critical review of the literature. Arch Neurol 2000;57:1561–1565.

    Article  PubMed  CAS  Google Scholar 

  111. Bedlack RS, Edelman D, Gibbs JW 3rd, et al. APOE genotype is a risk factor for neuropathy severity in diabetic patients. Neurology 2003;60:1022–1024.

    Article  PubMed  CAS  Google Scholar 

  112. Murata M, Maruyama T, Suzuki Y, Ikeda Y. Paraoxonase 1 192Gln/Arg polymorphism is associated with the risk of microangiopathy in type 2 diabetes mellitus. Diabetic Med 2004;21:837–844.

    Article  PubMed  CAS  Google Scholar 

  113. Chistyakov DA, Savost’anov KV, Zotova EV, Nosikov VV. Polymorphisms in the Mn-SOD and EC-SOD genes and their relationship to diabetic neuropathy in type 1 diabetes mellitus. BMC Med Genet 2001;2:4.

    Article  PubMed  CAS  Google Scholar 

  114. Ye L, Xu Y, Zhu Y, Fan Y, Deng H, Zhang J. Association of polymorphism in neurogenic differentiation factor 1 gene with type 2 diabetes. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2002;19:484–487.

    PubMed  CAS  Google Scholar 

  115. Zotova EV, Savost’ianov KV, Chistiakov DA, et al. Search for the association of polymorphic markers for genes coding for antioxidant defence enzymes, with development of diabetic polyneuropathies in patients with type 1 diabetes mellitus. Mol Biol (Mosk) 2004;38:244–249.

    CAS  Google Scholar 

  116. Nosikov VV. Genomics of type 1 diabetes mellitus and its late complications. Mol Biol (Mosk) 2004;38:150–164.

    Article  CAS  Google Scholar 

  117. Zotova EV, Chistiakov DA, Savost’ianov KV, et al. Association of the SOD2 Ala(-9)val and SOD3 Arg213Gly polymorphisms with diabetic polyneuropathy in patients with diabetes mellitus type 1. Mol Biol (Mosk) 2004;37:404–408.

    Google Scholar 

  118. Zhou Z, Hoke A, Cornblath DR, Griffin JW, Polydefkis M. APOE epsilon4 is not a susceptibility gene in idiopathic or diabetic sensory neuropathy. Neurology 2005;64(1):139–141.

    PubMed  CAS  Google Scholar 

  119. Cai H, Wang X, Colagiuri S, Wilcken DEL. A common Glu298↔Asp (849G↔T) mutation at exon 7 of the endothelial nitric oxide synthase gene and vascular complications in type 2 diabetes. Diabetes Care 1998;21:2195–2196.

    Article  PubMed  CAS  Google Scholar 

  120. Shcherbak NS, Schwartz EI. The C825T polymorphism in the G-protein beta3 subunit gene and diabetic complications in IDDM patients. J Hum Genet 2001;46(1):188–191.

    Article  PubMed  CAS  Google Scholar 

  121. Asada T, Takakura S, Ogawa T, Iwai M, Kobayashi M. Overexpression of glucose transport protein 5 in sciatic nerve of streptozotocin-induced diabetic rats. Neurosci Lett 1998;14:111–114.

    Article  Google Scholar 

  122. Cai F, Tomlinson DR, Fernyhough P. Elevated expression of neurotrophin-3 mRNA in sensory nerve of streptozotocin-diabetic rats. Neurosci Lett 1999;263:81–84.

    Article  PubMed  CAS  Google Scholar 

  123. Shimizu H, Ohtani KI, Tsuchiya T, et al. Aldose reductase mRNA expression is associated with rapid development of diabetic microangiopathy in Japanese Type 2 diabetic (T2DM) patients. Diabetes Nutr Metab 2000;13:75–79.

    PubMed  CAS  Google Scholar 

  124. Xu G, Sima AA. Altered immediate early gene expression in injured diabetic nerve: implications in regeneration. J Neuropathol Exp Neurol 2001;60:972–983.

    PubMed  CAS  Google Scholar 

  125. Pittenger G, Vinik A. Nerve growth factor and diabetic neuropathy. Exp Diabesity Res 2003;4:271–285.

    PubMed  Google Scholar 

  126. Matsuda M, Kawasaki F, Inoue H, et al. Possible contribution of adipocytokines on diabetic neuropathy. Diabet Res Clin Pract 2004;66(Suppl 1):S121–S123.

    Article  CAS  Google Scholar 

  127. Wright DE, Ryals JM, McCarson KE, Christianson JA. Diabetes-induced expression of activating transcription factor 3 in mouse primary sensory neurons. J Perpher Nerv Syst 2004;8:242–254.

    Article  Google Scholar 

  128. Sozmen EY, Sozmen B, Delen Y, Onat T. Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Arch Med Res 2001;32:283–287.

    Article  PubMed  CAS  Google Scholar 

  129. Harjutsalo V, Katoh S, Sarti C, Tajima N, Tuomilehto J. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes 2004;53(9):2449–2454.

    Article  PubMed  CAS  Google Scholar 

  130. Kasajima H, Yamagishi S, Sugai S, Yagihashi N, Yagihashi S. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch 2001;439(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  131. Murthy KG, Salzman AL, Southan GJ, Szabo C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001;7:108–113.

    Article  PubMed  Google Scholar 

  132. Rossell JW, Golovov D, Vincent AM, et al. High glucose-induced oxidative trsess and mitochondrial dysfunction in neurons. FASEB J 2002;16:1738–1748.

    Article  Google Scholar 

  133. Samaii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159–162.

    Article  Google Scholar 

  134. Schimizu H, Ohtani KI, Tsuchiya T, et al. Aldose reductase mRNA expression is associated with rapid development of diabetic microangiopathy in Japanese type 2 diabetic (T2DM) patients. Diabetes Nutr Metab 2000;13:75–79.

    Google Scholar 

  135. Shangguan Y, Hall KE, Neubig RR, Wiley JW. Diabetic neuropathy: inhibitory G protein dysfunction involves PKC-dependent phosphorylation of Goalpha. Neurochemistry 2003;86(4):1006–1014.

    Article  CAS  Google Scholar 

  136. UK Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. Brit Med J 1998;317:703.

    Google Scholar 

  137. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.

    Article  Google Scholar 

  138. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Metab 1997;3:97–107.

    Google Scholar 

  139. Zochodne DW. Diabetic neuropathies: features and mechanisms. Brain Pathol 1999;9:369–391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Demaine, A.G., Yang, B. (2007). Genomics of Diabetic Neuropathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics