Skip to main content

Other Therapeutic Agents for the Treatment of Diabetic Neuropathy

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

Abstract

The pathogenesis of diabetic neuropathy is complex and it is important to understand the underlying pathology leading to the complication in order to best tailor treatment for each individual patient. It is unlikely that reversing any single mechanism will prove sufficient for reversing nerve damage. Several drugs, such as antioxidant, PKC inhibitors and nerve growth factors can have effects on multiple systems that are compromised in diabetic neuropathy, yet even those may not be enough in and of themselves to completely restore neurological function. Combination therapy may prove to be the best long term approach, and studies of those combinations should prove revealing as to the relative roles of metabolic dysfunction, microvascular insufficiency and autoimmunity in the diabetic neuropathy patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vinik AI, Pittenger GL, Barlow P, Mehrabyan A. Diabetic Neuropathies: An overview of clinical aspects, pathogenesis, and treatment. In Diabetes Mellitus: A Fundamental and Clinical Text, 3rd ed. (LeRoith D, Taylor SI, Olefsky JM, eds.), Philadelphia, PA, Lippincott Williams and Wilkins, 2004.

    Google Scholar 

  2. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. NEngl J Med 1993;329:977–986.

    Article  Google Scholar 

  3. United Kingdom Prospective Diabetes Study Group. United Kingdom prospective diabetes study (UKPDS) 13: relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ 1995;310:83–88.

    Google Scholar 

  4. Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004;27:2178–2183.

    Article  PubMed  CAS  Google Scholar 

  5. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004;25:612–628.

    Article  PubMed  CAS  Google Scholar 

  6. Cameron NE, Cotter MA, Horrobin DH, Tritschler HJ. Effects of alpha-lipoic acid on neurovascular function in diabetic rats: interaction with essential fatty acids. Diabetologia 1998;41:390–399.

    Article  PubMed  CAS  Google Scholar 

  7. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000;49:1006–1015.

    Article  PubMed  CAS  Google Scholar 

  8. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001;50:1927–1937.

    Article  PubMed  CAS  Google Scholar 

  9. Ziegler D, Gries FA. Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy. Diabetes 1997;46(Suppl 2):S62–66.

    Google Scholar 

  10. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 1999;22:1296–1301.

    Article  PubMed  CAS  Google Scholar 

  11. Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care 1997;20:369–373.

    Article  PubMed  CAS  Google Scholar 

  12. Jamal GA. The use of gamma linolenic acid in the prevention and treatment of diabetic neuropathy. Diabet Med 1994; 11:145–149.

    Article  PubMed  CAS  Google Scholar 

  13. Keen H, Payan J, Allawi J, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-linolenic acid multicenter trial group. Diabetes Care 1993; 16:8–15.

    Article  PubMed  CAS  Google Scholar 

  14. Keen H, Payan J, Allawi J, et al. Treatment of diabetic neuropathy with g-linolenic acid. Diabetes Care 1993; 16:8–15.

    Article  PubMed  CAS  Google Scholar 

  15. Davi G, Ciabattoni G, Consoli A, et al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999;99:224–229.

    PubMed  CAS  Google Scholar 

  16. Fuller CJ, Chandalia M, Garg A, Grundy SM, Jialal I. RRR-alpha-tocopheryl acetate supplementation at pharmacologic doses decreases low-density-lipoprotein oxidative susceptibility but not protein glycation in patients with diabetes mellitus. Am J Clin Nutr 1996;63:753–759.

    PubMed  CAS  Google Scholar 

  17. Ruffini I, Belcaro G, Cesarone MR, et al. Evaluation of the local effects of vitamin E (E-Mousse) on free radicals in diabetic microangiopathy: a randomized, controlled trial. Angiology 2003;54:415–421.

    PubMed  CAS  Google Scholar 

  18. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF Jr, Creager MA. Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 2003;285:H2392–H2398.

    PubMed  CAS  Google Scholar 

  19. Schmidt RE, Dorsey DA, Beaudet LN, Reiser KM, Williamson JR, Tilton RG. Effect of aminoguanidine on the frequency of neuroaxonal dystrophy in the superior mesenteric sympathetic autonomic ganglia of rats with streptozotocin-induced diabetes. Diabetes 45 1996;284–290.

    Article  PubMed  CAS  Google Scholar 

  20. Miyauchi Y, Shikama H, Takasu T, et al. Slowing of peripheral motor nerve conduction was ameliorated by aminoguanidine in streptozocin-induced diabetic rats. Eur J Endocrinol 1996; 134:467–473.

    Article  PubMed  CAS  Google Scholar 

  21. Vasan S, Zhang X, Kapurniotu A, et al. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 1996;382:275–278.

    Article  PubMed  CAS  Google Scholar 

  22. Oturai PS, Christensen M, Rolin B, Pedersen KE, Mortensen SB, Boel E. Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats. Metabolism 2000;49:996–1000.

    Article  PubMed  CAS  Google Scholar 

  23. Nargi SE, Colen LB, Liuzzi F, Al-Abed Y, Vinik AI. PTB treatment restores joint mobility in a new model of diabetic cheirothropathy. Diabetes 1999;48:A17.

    Google Scholar 

  24. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 2003;419:89–96.

    Article  PubMed  CAS  Google Scholar 

  25. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998;332 (Pt 2):281–292.

    PubMed  CAS  Google Scholar 

  26. Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 2000;21:181–187.

    Article  PubMed  CAS  Google Scholar 

  27. Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications. Diabet Med 2001;18:945–959.

    Article  PubMed  CAS  Google Scholar 

  28. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA 1992;89:11,059–11,063.

    Article  PubMed  CAS  Google Scholar 

  29. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607–614.

    Article  PubMed  CAS  Google Scholar 

  30. Suzuma K, Takahara N, Suzuma I, et al. Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci USA 2002;99:721–726.

    Article  PubMed  CAS  Google Scholar 

  31. Leinninger GM, Vincent AM, Feldman EL. The role of growth factors in diabetic peripheral neuropathy. J Peripher Nerv Syst 2004;9:26–53.

    Article  PubMed  CAS  Google Scholar 

  32. Ishii H, Koya D, King GL. Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J Mol Med 1998;76:21–31.

    Article  PubMed  CAS  Google Scholar 

  33. Bohlen HG, Nase GP. Arteriolar nitric oxide concentration is decreased during hyperglycemiainduced betaII PKC activation. Am J Physiol Heart Circ Physiol 2001;280:H621–H627.

    PubMed  CAS  Google Scholar 

  34. Nonaka A, Kiryu J, Tsujikawa A, et al. PKC-beta inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci 2000;41:2702–2706.

    PubMed  CAS  Google Scholar 

  35. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 1993;265:E783–793.

    PubMed  CAS  Google Scholar 

  36. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997;46:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  37. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996;272:728–731.

    Article  PubMed  CAS  Google Scholar 

  38. Bursell SE, Takagi C, Clermont AC, et al. Specific retinal diacylglycerol and protein kinase C beta isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci 1997;38:2711–2720.

    PubMed  CAS  Google Scholar 

  39. Danis RP, Bingaman DP, Jirousek M, Yang Y. Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Invest Ophthalmol Vis Sci 1998;39:171–179.

    PubMed  CAS  Google Scholar 

  40. Nakamura J, Kato K, Hamada Y, et al. A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes 1999;48:2090–2095.

    Article  PubMed  CAS  Google Scholar 

  41. Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 2000; 14:439–447.

    PubMed  CAS  Google Scholar 

  42. Kelly DJ, Zhang Y, Hepper C, et al. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 2003;52:512–518.

    Article  PubMed  CAS  Google Scholar 

  43. Cameron NE, Cotter MA. Effects of protein kinase Cbeta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev 2002;18:315–323.

    Article  PubMed  CAS  Google Scholar 

  44. Efendiev R, Bertorello AM, Pedemonte CH. PKC-beta and PKC-zeta mediate opposing effects on proximal tubule Na+,K+-ATPase activity. FEBS Lett 1999;456:45–48.

    Article  PubMed  CAS  Google Scholar 

  45. Kowluru RA, Jirousek MR, Stramm L, Farid N, Engerman RL, Kern TS. Abnormalities of retinal metabolism in diabetes or experimental galactosemia: V. Relationship between protein kinase C and ATPases. Diabetes 1998;47:464–469.

    Article  PubMed  CAS  Google Scholar 

  46. Nangle MR, Cotter MA, Cameron NE. Protein kinase C beta inhibition and aorta and corpus cavernosum function in streptozotocin-diabetic mice. Eur J Pharmacol 2003;475:99–106.

    Article  PubMed  CAS  Google Scholar 

  47. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA. Inhibition of protein kinase Cbeta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans. Circ Res 2002;90:107–111.

    Article  PubMed  CAS  Google Scholar 

  48. Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2002;103:311–321.

    PubMed  CAS  Google Scholar 

  49. Kim H, Sasaki T, Maeda K, Koya D, Kashiwagi A, Yasuda H. Protein kinase Cbeta selective inhibitor LY333531 attenuates diabetic hyperalgesia through ameliorating cGMP level of dorsal root ganglion neurons. Diabetes 2003;52:2102–2109.

    Article  PubMed  CAS  Google Scholar 

  50. Vinik AI, Kles K. Pathophysiology and treatment of diabetic peripheral neuropathy. Curr Diabetes Rev 2005 (in press).

    Google Scholar 

  51. Vinik AI, Bril V, Litchy WJ, Price KL, Bastyr EJ 3rd, MBBG Study Group. Sural sensory action potential identifies diabetic peripheral neuropathy responders to therapy. Muscle Nerve 2005;32:619–625.

    Article  PubMed  Google Scholar 

  52. Vinik AI, Bril V, Kempler P, et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase Cbeta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther 2005;27:1164–1180.

    Article  PubMed  CAS  Google Scholar 

  53. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845.

    Article  PubMed  CAS  Google Scholar 

  54. Vincent KA, Shyu KG, Luo Y, et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 2000;102:2255–2261.

    PubMed  CAS  Google Scholar 

  55. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331: 1480–1487.

    Article  PubMed  CAS  Google Scholar 

  56. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159–162.

    Article  PubMed  CAS  Google Scholar 

  57. Rivard A, Silver M, Chen D, et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 1999; 154:355–363.

    PubMed  CAS  Google Scholar 

  58. Tesfaye S, Malik R, Ward JD. Vascular factors in diabetic neuropathy. Diabetologia 1994;37:847–854.

    Article  PubMed  CAS  Google Scholar 

  59. Malik RA, Tesfaye S, Thompson SD, et al. Endoneurial localisation of microvascular damage in human diabetic neuropathy. Diabetologia 1993;36:454–459.

    Article  PubMed  CAS  Google Scholar 

  60. Tesfaye S, Harris N, Jakubowski JJ, et al. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia 1993;36:1266–1274.

    Article  PubMed  CAS  Google Scholar 

  61. Malik RA, Tesfaye S, Thompson SD, et al. Transperineurial capillary abnormalities in the sural nerve of patients with diabetic neuropathy. Microvascular Res 1994;48:236–245.

    Article  CAS  Google Scholar 

  62. Eaton SE, Harris ND, Ibrahim S, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia 2003;46:934–939.

    Article  PubMed  CAS  Google Scholar 

  63. Griffey RH, Eaton RP, Sibbitt RR, Sibbitt WL Jr, Bicknell JM. Diabetic neuropathy. Structural analysis of nerve hydration by magnetic resonance spectroscopy. JAMA 1988; 260:2872–2878.

    Article  PubMed  CAS  Google Scholar 

  64. Dyck PJ, Hansen S, Karnes J, et al. Capillary number and percentage closed in human diabetic sural nerve. Proc NatlAcad Sci USA 1985;82:2513–2517.

    Article  CAS  Google Scholar 

  65. Myers RR, Powell HC. Galactose neuropathy: impact of chronic endoneurial edema on nerve blood flow. Ann Neurol 1984; 16:587–594.

    Article  PubMed  CAS  Google Scholar 

  66. Teunissen LL, Veldink J, Notermans NC, Bleys RL. Quantitative assessment of the innervation of epineurial arteries in the peripheral nerve by immunofluorescence: differences between controls and patients with peripheral arterial disease. Acta Neuropathol (Berl) 2002; 103:475–480.

    Article  CAS  Google Scholar 

  67. Theriault M, Dort J, Sutherland G, Zochodne DW. Local human sural nerve blood flow in diabetic and other polyneuropathies. Brain 1997;120:1131–1138.

    Article  PubMed  Google Scholar 

  68. Schratzberger P, Schratzberger G, Silver M, et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000;6:405–413.

    Article  PubMed  CAS  Google Scholar 

  69. Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001;107:1083–1092.

    PubMed  CAS  Google Scholar 

  70. Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001;28:131–138.

    Article  PubMed  CAS  Google Scholar 

  71. Williams B, Gallacher B, Patel H, Orme C. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 1997;46:1497–1503.

    Article  PubMed  CAS  Google Scholar 

  72. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factorbeta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997;100:115–126.

    PubMed  CAS  Google Scholar 

  73. Kihara M, Low PA. Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy. ExpNeurol 1995;132:180–185.

    CAS  Google Scholar 

  74. Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in nondiabetic and streptozotocin-diabetic rats. Diabetologia 1994;37:449–459.

    Article  PubMed  CAS  Google Scholar 

  75. Boulton AJ, Malik RA. Diabetic neuropathy. Med Clin North Am 1998;82:909–929.

    Article  PubMed  CAS  Google Scholar 

  76. Vinik AI, Erbas T, Stansberry KB, Pittenger GL. Small fiber neuropathy and neurovascular disturbances in diabetes mellitus. Exp Clin Endocrinol Diabetes 2001;109(Suppl 2): S451–S473.

    Article  PubMed  CAS  Google Scholar 

  77. Boulton AJ, Malik RA, Arezzo JC, Sosenko JM. Diabetic somatic neuropathies. Diabetes Care 2004;27:1458–1486.

    Article  PubMed  Google Scholar 

  78. Ibrahim S, Harris ND, Radatz M, et al. A new minimally invasive technique to show nerve ischaemia in diabetic neuropathy. Diabetologia 1999;42:737–742.

    Article  PubMed  CAS  Google Scholar 

  79. Newrick PG, Wilson AJ, Jakubowski J, Boulton AJ, Ward JD. Sural nerve oxygen tension in diabetes. Br Med J (Clin Res Ed) 1986;293:1053–1054.

    CAS  Google Scholar 

  80. Kakizawa H, Itoh M, Itoh Y, et al. The relationship between glycemic control and plasma vascular endothelial growth factor and endothelin-1 concentration in diabetic patients. Metabolism 2004;53:550–555.

    Article  PubMed  CAS  Google Scholar 

  81. Schneider JG, Tilly N, Hierl T, et al. Elevated plasma endothelin-1 levels in diabetes mellitus. Am J Hypertens 2002; 15:967–972.

    Article  PubMed  CAS  Google Scholar 

  82. Aydin A, Ozden BC, Karamursel S, Solakoglu S, Aktas S, Erer M. Effect of hyperbaric oxygen therapy on nerve regeneration in early diabetes. Microsurgery 2004;24:255–261.

    Article  PubMed  Google Scholar 

  83. Caselli A, Rich J, Hanane T, Uccioli L, Veves A. Role of C-nociceptive fibers in the nerve axon reflex-related vasodilation in diabetes. Neurology 2003;60:297–300.

    PubMed  CAS  Google Scholar 

  84. Shapiro SA, Stansberry KB, Hill MA, et al. Normal blood flow response and vasomotion in the diabetic Charcot foot. J Diabetes Complications 1998; 12:147–153.

    Article  PubMed  CAS  Google Scholar 

  85. Stansberry KB, Shapiro SA, Hill MA, McNitt PM, Meyer MD, Vinik AI. Impaired peripheral vasomotion in diabetes. Diabetes Care 1996;19:715–721.

    Article  PubMed  CAS  Google Scholar 

  86. Stansberry KB, Peppard HR, Babyak LM, Popp G, McNitt PM, Vinik AI. Primary nociceptive afferents mediate the blood flow dysfunction in non-glabrous (hairy) skin of type 2 diabetes: a new model for the pathogenesis of microvascular dysfunction. Diabetes Care 1999;22:1549–1554.

    Article  PubMed  CAS  Google Scholar 

  87. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Yorek MA. Changes in endoneurial blood flow, motor nerve conduction velocity and vascular relaxation of epineurial arterioles of the sciatic nerve in ZDF-obese diabetic rats. Diabetes Metab Res Rev 2002; 18:49–56.

    Article  PubMed  Google Scholar 

  88. Coppey LJ, Gellett JS, Davidson EP, et al. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br J Pharmacol 2001;134:21–29.

    Article  PubMed  CAS  Google Scholar 

  89. Coppey LJ, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Slowing of motor nerve conduction velocity in streptozotocin-induced diabetic rats is preceded by impaired vasodilation in arterioles that overlie the sciatic nerve. Int J Exp Diabetes Res 2000;1: 131–143.

    Article  PubMed  CAS  Google Scholar 

  90. Herrmann DN, Griffin JW, Hauer P, Cornblath DR, McArthur JC. Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology 1999;53: 1634–1640.

    PubMed  CAS  Google Scholar 

  91. Greene DA, Stevens MJ, Obrosova I, Feldman EL. Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 1999;375:217–223.

    Article  PubMed  CAS  Google Scholar 

  92. Consensus statement: Report and recommendations of the San Antonio conference on diabetic neuropathy. American Diabetes Association & American Academy of Neurology. Diabetes Care 1988; 11:592–597.

    Google Scholar 

  93. Dyck PJ, Karnes JL, O’Brien PC, Litchy WJ, Low PA, Melton III LJ. The Rochester Diabetic Neuropathy Study: Reassessment of tests and criteria for diagnosis and staged severity. Neurology 1992;42:1164–1170.

    PubMed  CAS  Google Scholar 

  94. Krendel DA, Costigan DA, Hopkins LC. Successful treatment of neuropathies in patients with diabetes mellitus. Arch Neurol 1995;52:1053–1061.

    PubMed  CAS  Google Scholar 

  95. Barada A, Reljanovic M, Milicevic Z, et al. Proximal diabetic neuropathy ⇋esponse to immunotherapy. Diabetes 1999;48(Suppl 1):A148.

    Google Scholar 

  96. Suez D. Intravenous immunoglobulin therapy: indication, potential side effects and treatment guidelines. J Intraven Nurs 1995; 18:178–190.

    PubMed  CAS  Google Scholar 

  97. Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P, Emanueli C. Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia 2004;47:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  98. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 2000;49:1932–1938.

    Article  PubMed  CAS  Google Scholar 

  99. Apfel SC. Neurotrophic factors in the therapy of diabetic neuropathy. Am J Med 1999; 107(Suppl 2):S34–S42.

    Article  Google Scholar 

  100. Knezevic-Cuca J, Stansberry KB, Johnston G, et al. Neurotrophic role of interleukin-6 and soluble interleukin-6 receptors on N1E-115 neuroblastoma cells. J Neuroimmunol 2000; 102:8–16.

    Article  PubMed  CAS  Google Scholar 

  101. Ishii DN, Glazner GW, Whalen LR. Regulation of peripheral nerve regeneration by insulin-like growth factors. Ann NY Acad Sci 1993;692:172–182.

    Article  PubMed  CAS  Google Scholar 

  102. LeBeau JM, Liuzzi FJ. Laminin B2 mRNA is up-regulated in sensory neurons and Schwann cells during peripheral nerve regeneration. Soc Neurosci (Abstract) 1991; 17:1500.

    Google Scholar 

  103. LeBeau JM, Liuzzi FJ, Depto AJ, Vinik AI. Up-regulation of laminin B2 gene expression in dorsal root ganglion neurons and non-neuronal cells during sciatic nerve regeneration. Exp Neurol 1995;134:150–155.

    Article  CAS  Google Scholar 

  104. Bradley JL, King RH, Muddle JR, Thomas PK. The extracellular matrix of peripheral nerve in diabetic polyneuropathy. Acta Neuropathol (Berl) 2000;99:539–546.

    Article  CAS  Google Scholar 

  105. Pittenger GL, Vinik AI. Nerve growth factor and diabetic neuropathy. Exp Diabesity Res 2003;4:271–285.

    PubMed  Google Scholar 

  106. Klein R, Nanduri V, Jing SA, et al. The trkB tyrosine protein kinase is a receptor for brainderived neurotrophic factor and neurotrophin-3. Cell 1991;66:395–403.

    Article  PubMed  CAS  Google Scholar 

  107. Anton ES, Weskamp G, Reichardt LF, Matthew WD. Nerve growth factor and its lowaffinity receptor promote Schwann cell migration. Proc Natl Acad Sci USA 1994;91: 2795–2799.

    Article  PubMed  CAS  Google Scholar 

  108. Faradji V, Sotelo J. Low serum levels of nerve growth factor in diabetic neuropathy. Acta Neurol Scand 1990;81:402–406.

    Article  PubMed  CAS  Google Scholar 

  109. Crosby SR, Tsigos C, Anderton CD, Gordon C, Young RJ, White A. Elevated plasma insulin-like growth factor binding protein-1 levels in type 1 (insulin-dependent) diabetic patients with peripheral neuropathy. Diabetologia 1992;35:868–872.

    Article  PubMed  CAS  Google Scholar 

  110. Diemel LT, Stevens JC, Willars GB, Tomlinson DR. Depletion of substance P and calcitonin gene-related peptide in sciatic nerve of rats with experimental diabetes: effects of insulin and aldose reductase inhibition. Neurosci Lett 1992;137:253–256.

    Article  PubMed  CAS  Google Scholar 

  111. Hellweg R, Hartung HD, Hock C, Whöhrle M, Raivich G. Nerve growth factor (NGF) changes in rat diabetic neuropathy. Soc Neurosci (Abstract) 1991; 17:1497.

    Google Scholar 

  112. Tomlinson DR, Fernyhough P, Diemel LT. Neurotrophins and peripheral neuropathy. Philos Trans R Soc Lond B Biol Sci 1996;351:455–462.

    Article  PubMed  CAS  Google Scholar 

  113. Apfel SC, Kessler JA. Neurotropic factors in the therapy of peripheral neuropathy. Bailliere’s Clinical Neurology 1995;4:593–606.

    PubMed  CAS  Google Scholar 

  114. Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 1998;51:695–702.

    PubMed  CAS  Google Scholar 

  115. Vinik AI. Treatment of diabetic polyneuropathy (DPN) with recombinant human nerve growth factor (rhNGF). Diabetes 1999;48(Suppl 1):A54–A55.

    Google Scholar 

  116. Raskin P, Donofrio PD, Rosenthal NR, et al. Topiramate vs placebo in painful diabetic neuropathy: analgesic and metabolic effects. Neurology 2004;63:865–873.

    PubMed  CAS  Google Scholar 

  117. Vinik A, Hewitt D, Xiang J. Topiramate in the treatment of painful diabetic neuropathy: results from a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 2003;60(Suppl 1):A154–A155.

    Google Scholar 

  118. Vinik AI, Pittenger GL, Anderson SA, Stansberry K, McNear E, Barlow P. Topiramate improves C-fiber neuropathy and features of the dysmetabolic syndrome in type 2 diabetes. Diabetes 2003;52(Suppl 1):A130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pittenger, G.L., Pharson, H., Ullal, J., Vinik, A.I. (2007). Other Therapeutic Agents for the Treatment of Diabetic Neuropathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics