Skip to main content

Induced Regeneration of Skin and Peripheral Nerves

  • Chapter
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 1830 Accesses

Abstract

Acute or chronic injury to an organ is followed by a spontaneous healing process. Injury to the mammalian fetus is reversible during early stages of gestation; the spontaneous wound response is capable of restoring the structure and function of the original organ (regeneration). In contrast, the unimpaired response of adults to severe injury is an irreversible process leading to closure of the injured site by contraction and formation of scar, a nonphysiological tissue (repair). The consequences of irreversible healing at the organ scale are far reaching: they often result in an essentially nonfunctional organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yannas IV. Tissue and Organ Regeneration in Adults. Springer, New York, 2001

    Google Scholar 

  2. Butler CE, Orgill DP. Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane. Adv Biochem Eng Biotechnol 2005;94:23–41.

    PubMed  Google Scholar 

  3. Hatton MP, Rubin PAD. Conjunctival regeneration. Adv Biochem Eng Biotechnol 2005;94:125–140.

    PubMed  Google Scholar 

  4. Zhang M, Yannas IV. Peripheral nerve regeneration. Adv Biochem Eng Biotechnol 2005;94:67–89.

    PubMed  Google Scholar 

  5. Mistry AS, Mikos AG. Tissue engineering for bone regeneration. Adv Biochem Eng Biotechnol 2005;94:1–22.

    PubMed  Google Scholar 

  6. Rabkin-Aikawa E, Mayer JEJr, Schoen FJ. Heart valve regeneration. Adv Biochem Eng Biotechnol 2005;94:141–178.

    PubMed  Google Scholar 

  7. Kinner B, Capito RM, Spector M. Regeneration of articular cartilage. Adv Biochem Eng Biotechnol 2005;94:91–123.

    PubMed  CAS  Google Scholar 

  8. Atala A. Regeneration of urologic tissues and organs. Adv Biochem Eng Biotechnol 2005;94:179–208.

    Google Scholar 

  9. Verma P, Fawcett J. Spinal cord regeneration. Adv Biochem Eng Biotechnol 2005;94:43–66.

    PubMed  Google Scholar 

  10. Gottlieb ME, Furman J. Successful management and surgical closure of chronic and pathological wounds using Integra®. J Burns Surg Wound Care 2004;3(1):4.

    Google Scholar 

  11. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilise a polymeric template to synthesise a functional extension of skin. Science 1982;215:174–176.

    Article  PubMed  CAS  Google Scholar 

  12. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Regeneration of skin following closure of deep wounds with a biodegradable template. Trans Soc Biomater 1982;5:24–27.

    Google Scholar 

  13. Yannas IV, Orgill DP, Skrabut EM, Burke JF. Skin regeneration with a bioreplaceable polymeric template, in Polymeric Materials and Artificial Organs, (Gebelein CG, ed.), American Chemical Society, Washington, DC, 1984, pp. 191–197.

    Google Scholar 

  14. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF Synthesis and characterization of a model extracellular matrix which induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 1989;86:933–937.

    Article  PubMed  CAS  Google Scholar 

  15. Burke JF, Yannas IV, Quniby WC, Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981;194:413–428.

    Article  PubMed  CAS  Google Scholar 

  16. Murphy GF, Orgill DP, Yannas IV. Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycan grafts. Lab Invest 1990;62:305–313.

    PubMed  CAS  Google Scholar 

  17. Compton CC, Butler CE, Yannas IV, Warland G, Orgill DP. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol 1998;110:908–916.

    Article  PubMed  CAS  Google Scholar 

  18. Butler CE, Yannas IV, Compton CC, Correia CA, Orgill DP. Comparison of cultured and uncultured keratinocytes seeded into a collagen-GAG matrix for skin replacements. Br J Plast Surg 1999;52:127–132.

    Article  PubMed  CAS  Google Scholar 

  19. Yannas IV, Orgill DP, Silver J, Norregaard TV, Zervas NT, Schoene WC. Polymeric template facilitates regeneration of sciatic nerve across 15 mm gap. Trans Soc Biomater 1985;8:146.

    Google Scholar 

  20. Yannas IV, Orgill DP, Silver J, Norregaard TV, Zervas NT, Schoene WC. Regeneration of sciatic nerve across 15 mm gap by use of a polymeric template, in Advances in Biomedical Polymers (Gebelein CG, ed.), Plenum Publishing Corporation, New York, 1987, pp. 1–9.

    Google Scholar 

  21. Chang A, Yannas IV, Perutz S, et al. Electrophysiological study of recovery of peripheral nerves regenerated by a collagen-glycosaminoglycan copolymer matrix, in Progress in biomedical polymers (Gebeelin CG, Dunn RL, eds.), Plenum, New York, 1990, pp. 107–119.

    Google Scholar 

  22. Chang AS-P, Yannas IV. Peripheral nerve regeneration, in Neuroscience Year (Smith B, Adelman G, eds.), Birkhauser, Boston, 1992.

    Google Scholar 

  23. Chamberlain LJ, Yannas IV, Arrizabalaga A, Hsu H-P, Norregarrd TV, Spector M. Early peripheral nerve healing in collagen and silicone tube implants: myofibroblasts and the cellular response. Biomaterials 1998;19:1393–1403.

    Article  PubMed  CAS  Google Scholar 

  24. Chamberlain LJ, Yannas IV, Hsu H-P, Strichartz G, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 1998;154:315–329.

    Article  PubMed  CAS  Google Scholar 

  25. Chamberlain LJ, Yannas IV, Hsu H-P, Spector M. Connective tissue response to tubular implants for peripheral nerve regeneration: the role of myofibroblasts. J Comp Neurol 2000;417:415–430.

    Article  PubMed  CAS  Google Scholar 

  26. Chamberlain LJ, Yannas IV, Hsu H-P, Strichartz GR, Spector M. Near-terminus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a ten-millimeter gap. J Neurosci Res 2000;60:666–677.

    Article  PubMed  CAS  Google Scholar 

  27. Spilker MH. Peripheral nerve regeneration through tubular devices. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2000.

    Google Scholar 

  28. Hsu WC, Spilker MH, Yannas IV, Rubin PAD. Inhibition of conjunctival scarring and contraction by a porous collagen-GAG implant. Invest Opthamol Vis Sci 2000;41:2404–2411.

    CAS  Google Scholar 

  29. Goss RJ. Regeneration versus repair, in Wound Healing: Biochemical and Clinical Aspects (Cohen IK, Diegelmann RF, Lindblad WJ, eds.), Saunders, Philadelphia, PA, 1992, pp. 20–39.

    Google Scholar 

  30. Martinez-Hernandez A. Repair, regeneration, and fibrosis, in Pathology (Rubin E, Farber JL, eds.). JB Lippincott-Raven, Philadelphia, PA, 1998, pp. 66–95.

    Google Scholar 

  31. Burkitt HG, Young B, Heath JW, Kilgore J. Wheater’s Functional Histology, 2nd ed., Churchill Livingstone, Edinburgh, 1993.

    Google Scholar 

  32. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 1974;77:313–346.

    Google Scholar 

  33. Bunge RP, Bunge MB. Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci 1983;6:499.

    Article  Google Scholar 

  34. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 1997;14:67–116.

    PubMed  CAS  Google Scholar 

  35. Stenn KS, Malhotra R. Epithelialization, in Wound Healing: Biochemical and Clinical Aspects (Cohen IK, Diegelmann RF, Lindblad WJ, eds.), Saunders, Philadelphia, PA, 1992, pp. 115–127.

    Google Scholar 

  36. Haber RM, Hanna W, Ramsay CA, Boxall LB. Cicatricial junctional epidermolysis bullosa. J Am Acad Dermatol 1985;12:836–844.

    Article  PubMed  CAS  Google Scholar 

  37. Ikeda K, Oda Y, Tomita K, Nomura S, Nakanishi I. Isolated Schwann cells can synthesize the basement membrane in vitro. J Electron Microsc (Tokyo) 1989;38:230–234.

    CAS  Google Scholar 

  38. Uitto J, Mauviel A, McGrath J. The dermal-epidermal basement membrane zone in cutaneous wound healing, in The Molecular and Cellular Biology of Wound Repair (Clark RAF, ed.), 2nd ed., Plenum, New York, 1996, pp. 513–560.

    Google Scholar 

  39. Winter GD. Epidermal regeneration studied in the domestic pig, in Epidermal Wound Healing (Maibach HL, Rovee DT, eds.), Year Book Medical Publishers, Chicago, IL, 1972, pp. 71–112.

    Google Scholar 

  40. De Medinacelli L, Wyatt RJ, Freed WJ. Peripheral nerve reconnection: mechanical, thermal, and ionic conditions that promote the return of function. Exp Neurol 1983;81:469–487.

    Article  Google Scholar 

  41. Terzis JK. Microreconstruction of Nerve Injuries. WB Saunders, Philadelphia, PA, 1987.

    Google Scholar 

  42. Yannas IV, Burke JF, Warpehoski M, et al. Prompt, long-term functional replacement of skin. Trans Am Soc Artif Intern Organs 1981;27:19–22.

    PubMed  CAS  Google Scholar 

  43. Ramirez AT, Soroff HS, Schwartz MS, Mooty J, Pearson E, Raben MS. Surg Gynecol Obstet 1969;128(2):283–293.

    PubMed  CAS  Google Scholar 

  44. Oppenheimer R, Hinman F, Jr. Ureteral regeneration: contracture vs. hyperplasia of smooth muscle. J Urol 1955;74:476–484.

    PubMed  CAS  Google Scholar 

  45. Kiviat MD, Ross R, Ansell JS. Smooth muscle regeneration in the ureter. Am J Pathol 1973;72:403–416.

    PubMed  CAS  Google Scholar 

  46. Bulut T, Bilsel Y, Yanar H, et al. The effects of beta-aminopropionitrile on colonic anastomosis in rats. J Invest Surg 2004;17(4):211–219.

    Article  PubMed  Google Scholar 

  47. Dahners LE, Banes AJ, Burridge KWT. The relationship of actin to ligament contraction. Clin Orthop 1986;210:246–251.

    PubMed  CAS  Google Scholar 

  48. Wilson CJ, Dahners LE. An examination of the mechanism of ligament contracture. Clin Orthop 1988;227:286–291.

    PubMed  CAS  Google Scholar 

  49. Unterhauser FN, Bosch U, Zeichen J, Weiler A. Alpha-smooth muscle actin containing contractile fibroblastic cells in human knee arthrofibrosis tissue. Arch Orthop Trauma Surg 2004;124(9):585–591.

    Article  PubMed  Google Scholar 

  50. Zeinoun T, Nammour S, Sourov N, Luomanen M. Myofibroblasts in healing laser excision wounds. Lasers Surg Med 2001;28(1):74–79.

    Article  PubMed  CAS  Google Scholar 

  51. Delaere PR, Hardillo J, Hermans R, Van Den Hof B. Prefabrication of composite tissue for improved tracheal reconstruction. Ann Otol Rhinol Laryngol 2001;110(9):849–860.

    PubMed  CAS  Google Scholar 

  52. Schmidt MR, Maeng M, Kristiansen SB, Andersen HR, Falk E. The natural history of collagen and alpha-actin expression after coronary angioplasty. Cardiovasc Pathol 2004;13(5):260–267.

    Article  PubMed  CAS  Google Scholar 

  53. Levine D, Rockey DC, Milner TA, Breuss JM, Fallon JT, Schnapp LM. Expression of the integrin alpha8beta1 during pulmonary and hepatic fibrosis. Am J Pathol 2000;156(6):1927–1935.

    PubMed  CAS  Google Scholar 

  54. Rudolph R, Van de Berg J, Ehrlich P. Wound contraction and scar contracture, in Wound Healing: Biochemical and Clinical Aspects (Cohen IK, Diegelmann RF, Lindblad WJ, eds.), WB Saunders Company, Philadelphia, PA, 1992, pp. 96–114.

    Google Scholar 

  55. Peacock EE Jr. Wound healing and wound care, in Principles of Surgery (Schwartz SI, Shires GT, Spencer FC, Storer EH, eds.), McGraw-Hill, New York, 1984.

    Google Scholar 

  56. Chou TD, Lee WT, Chen SL, et al. Split calvarial bone graft for chemical burn-associated nasal augmentation. Burns 2004;30(4):380–385.

    Article  PubMed  Google Scholar 

  57. Holmes W, Young JZ. Nerve regeneration after immediate and delayed suture. J Anat (London) 1942;77:63–96.

    CAS  Google Scholar 

  58. Weiss P. The technology of nerve regeneration: a review. Sutureless tabulation and related methods of nerve repair. J Neurosurg 1944;1:400–450.

    Article  Google Scholar 

  59. Weiss P, Taylor AC. Further experimental evidence against “neurotropism”; in nerve regeneration. J Exp Zool 1944;95:233–257.

    Article  Google Scholar 

  60. Sunderland S. The anatomy and pathology of nerve injury. Muscle Nerve 1990;13:771–784.

    Article  PubMed  CAS  Google Scholar 

  61. Krishnan KG, Winkler PA, Muller A, Grevers G, Steiger HJ. Closure of recurrent frontal skull base defects with vascularized flaps—a technical case report. Acta Neurochir (Wien) 2000;142(12):1353–1358.

    Article  CAS  Google Scholar 

  62. Cornelissen AM, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM. Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res 2000;79(10):1782–1788.

    PubMed  CAS  Google Scholar 

  63. Wong TTL, Daniels JT, Crowston JG, Khaw PT. MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol 2004;88(7):868–872.

    Article  PubMed  CAS  Google Scholar 

  64. Ivarsen A, Laurberg T, Moller-Pedersen T. Characterisation of corneal fibrotic wound repair at the LASIK flap margin. Br J Ophthalmol 2003;87(10):1272–1278.

    Article  PubMed  CAS  Google Scholar 

  65. Heimbach D, Luterman A, Burke J, et al. Artificial dermis for major burns. Ann Surg 1988;208:313–320.

    Article  PubMed  CAS  Google Scholar 

  66. Stern R, McPherson M, Longaker MT. Histologic study of artificial skin used in the treatment of full-thickness thermal injury. J Burn Care Rehabil 1990;11:7–13.

    Article  PubMed  CAS  Google Scholar 

  67. Greenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990;136:1235–1246.

    PubMed  CAS  Google Scholar 

  68. Puolakkainen PA, Twardzik DR, Ranchalis JE, Pankey SC, Reed MJ, Gombotz WR. The enhancement in wound healing by transforming growth factor-β1 (TGF-β1) depends on the topical delivery system. J Surg Res 1995;58:321–329.

    Article  PubMed  CAS  Google Scholar 

  69. Billingham RE, Reynolds J. Transplantation studies on sheets of pure epidermal epithelium and epidermal cell suspensions. Br J Plast Surg 1952;5:25–36.

    Article  PubMed  CAS  Google Scholar 

  70. Hansbrough JF, Morgan JL, Greenleaf GE, Bartel R. Composite grafts of human keratinocytes grown on a polyglactin mesh-cultured fibroblast dermal substitute function as a bilayer skin replacement in full-thickness wounds on athymic mice. J Burn Care Rehabil 1993;14:485–494.

    Article  PubMed  CAS  Google Scholar 

  71. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 1991;12:243–248.

    Article  PubMed  CAS  Google Scholar 

  72. Lorenz HP, Adzick NS. Scarless skin wound repair in the fetus. West J Med 1993;159:350–355.

    PubMed  CAS  Google Scholar 

  73. Mast BA, Neslon JM, Krummel TM. Tissue repair in the mammalian fetus, in Wound Healing: Biochemical and Clinical Aspects (Cohen IK, Diegelmann RF, Lindblad WJ, eds.), WB Saunders Company, Philadelphia, PA, 1992.

    Google Scholar 

  74. Martin P. Wound healing: aiming for perfect skin regeneration. Science 1996;276:75–81.

    Article  Google Scholar 

  75. Stocum DL. Wound Repair, Regeneration and Artificial Tissues, RG Landes Co., Austin, TX, 1995.

    Google Scholar 

  76. Yannas IV, Colt J, Wai YC. Wound contraction and scar synthesis during development of the amphibian Rana catesbeiana. Wound Repair Regen 1996;4:31–41.

    Google Scholar 

  77. Desmouliere A, Chaponnier C, Gabbiani G Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005;13(1):7–12.

    Article  PubMed  Google Scholar 

  78. Frangos JA (ed.) Physical Forces and the Mammalian Cell. Academic Press, New York, 1993.

    Google Scholar 

  79. Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contraction of a collagen-GAG matrix. Biomaterials 2001;22:2883–2891.

    Article  PubMed  CAS  Google Scholar 

  80. Freyman TM, Yannas IV, Pek Y-S, Yokoo R, Gibson LJ. Micromechanics of fibroblast contraction of a collagen-GAG matrix. Exp Cell Res 2001;269:140–153.

    Article  PubMed  CAS  Google Scholar 

  81. Harley BA, Spilker MH, Wu JW, et al. Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs 2004;176:153–165.

    Article  PubMed  CAS  Google Scholar 

  82. Racine-Samson L, Rockey DC, Bissell DM. The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem 1997;272:30,911–30,917.

    Article  PubMed  CAS  Google Scholar 

  83. Rudolph R, Abraham J, Vecchione T, Guber S, Woodward M. Myofibroblasts and free silicon around breast implants. Plast Reconstr Surg 1978;62:185–196.

    Article  PubMed  CAS  Google Scholar 

  84. Davison SP, McCaffrey TV, Porter MN, Manders E. Improved nerve regeneration with neutralization of transforming growth factor-beta1. Laryngoscope 1999;109:631–635.

    Article  PubMed  CAS  Google Scholar 

  85. Delaere PR, Hardillo J, Hermans R, Van Den Hof B. Prefabrication of composite tissue for improved tracheal reconstruction. Ann Otol Rhinol Laryngol 2001;110(9):849–860.

    PubMed  CAS  Google Scholar 

  86. Ehrlich HP, Keefer KA, Myers RL, Passaniti A. Vanadate and the absence of myofibroblasts in wound contraction. Arch Surg 1999;134:494–501.

    Article  PubMed  CAS  Google Scholar 

  87. Ehrlich HP, Gabbiani G, Meda P. Cell coupling modulates the contraction of fibroblast-populated collagen lattices. J Cell Physiol 2002;184:86–92.

    Article  Google Scholar 

  88. Eyden B. Electron microscopy in the study of myofibroblastic lesions. Semin Diagn Pathol 2003;20:13–24.

    PubMed  Google Scholar 

  89. Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997;275(5304):1308–1311.

    Article  PubMed  CAS  Google Scholar 

  90. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279(5350):509–514.

    Article  PubMed  CAS  Google Scholar 

  91. Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rhoassociated kinase (Rho-kinase). Science 1996;273(5272):245–248.

    Article  PubMed  CAS  Google Scholar 

  92. Serini G, Bochaton-Piallat M-L, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 1998;142:873–881.

    Article  PubMed  CAS  Google Scholar 

  93. Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G. Focal adhesion features during myofibroblast differentiation are controlled by intracellular and extracellular forces. J Cell Sci 2001;114:3285–3296.

    PubMed  CAS  Google Scholar 

  94. Yannas IV. Models of organ regeneration processes induced by templates. Ann N Y Acad Sci 1997;831:280–293.

    Article  PubMed  CAS  Google Scholar 

  95. Yannas IV. Studies on the biological activity of the dermal regeneration template. Wound Repair Regen 1998;6:518–524.

    Article  PubMed  CAS  Google Scholar 

  96. Troxel K. Delay of skin wound contraction by porous collagen-GAG matrices. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1994.

    Google Scholar 

  97. Dantzer E, Queruel P, Salinier L, Palmier B, Quinot JF. Dermal regeneration template for deep hand burns: clinical utility for both early grafting and reconstructive surgery. Br J Plast Surg 2003;56(8):764–774.

    Article  PubMed  CAS  Google Scholar 

  98. Young RC, Burd A. Pediatric upper limb contracture release following burn injury. Burns 2004;30(7):723–728.

    Article  PubMed  CAS  Google Scholar 

  99. Blanco NM, Edwards J, Zamboni WA. Dermal substitute (Integra) for open nasal wounds. Plast Reconstr Surg 2004;113(7):2224, 2225.

    PubMed  Google Scholar 

  100. Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full-thickness burn from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra). Plast Reconstr Surg 2004;113(3):978–981.

    Article  PubMed  Google Scholar 

  101. Abai B, Thayer D, Glat PM. The use of a dermal regeneration template (Integra) for acute resurfacing and reconstruction of defects created by excision of giant hairy nevi. Plast Reconstr Surg 2004;114(1):162–168.

    Article  PubMed  Google Scholar 

  102. Frame JD, Still J, Lakhel-LeCoadou A, et al. Use of dermal regeneration template in contracture release procedures: a multicenter evaluation. Plast Reconstr Surg 2004;113(5):1330–1338.

    Article  PubMed  Google Scholar 

  103. Heitland A, Piatkowski A, Noah EM, Pallua N. Update on the use of collagen/glycosaminoglycate skin substitute-six years of experiences with artificial skin in 15 German burn centers. Burns 2004;30(5):471–475.

    Article  PubMed  CAS  Google Scholar 

  104. Yannas IV. Facts and theories of organ regeneration. Adv Biochem Eng Biotechnol 2005;93:1–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Soller, E.C., Yannas, I.V. (2006). Induced Regeneration of Skin and Peripheral Nerves. In: Veves, A., Giurini, J.M., Logerfo, F.W. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-075-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-075-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-610-8

  • Online ISBN: 978-1-59745-075-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics