Skip to main content

Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier

  • Chapter
  • First Online:
Gene and Cell Therapies for Beta-Globinopathies

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 1013))

Abstract

In recent years, breakthroughs in human pluripotent stem cell (hPSC) research, namely cellular reprogramming and the emergence of sophisticated genetic engineering technologies, have opened new frontiers for cell and gene therapy. The prospect of using hPSCs, either autologous or histocompatible, as targets of genetic modification and their differentiated progeny as cell products for transplantation, presents a new paradigm of regenerative medicine of potential tremendous value for the treatment of blood disorders, including beta-thalassemia (BT) and sickle cell disease (SCD). Despite advances at a remarkable pace and great promise, many roadblocks remain before clinical translation can be realistically considered. Here we discuss the theoretical advantages of cell therapies utilizing hPSC derivatives, recent proof-of-principle studies and the main challenges towards realizing the potential of hPSC therapies in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., et al. 2010. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467:318-322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sadelain, M., Riviere, I., Wang, X., Boulad, F., Prockop, S., Giardina, P., Maggio, A., Galanello, R., Locatelli, F., and Yannaki, E. 2010. Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in beta-thalassemia. Ann N Y Acad Sci 1202:52-58.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K., and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872.

    Article  CAS  PubMed  Google Scholar 

  5. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-1920.

    Article  CAS  PubMed  Google Scholar 

  6. Davis, R.L., Weintraub, H., and Lassar, A.B. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987-1000.

    Article  CAS  PubMed  Google Scholar 

  7. Gurdon, J.B. 2006. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu Rev Cell Dev Biol 22:1-22.

    Article  CAS  PubMed  Google Scholar 

  8. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813.

    Article  CAS  PubMed  Google Scholar 

  9. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147.

    Article  CAS  PubMed  Google Scholar 

  10. Papapetrou, E.P., Tomishima, M.J., Chambers, S.M., Mica, Y., Reed, E., Menon, J., Tabar, V., Mo, Q., Studer, L., and Sadelain, M. 2009. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 106:12759-12764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., et al. 2009. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964-977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Okita, K., Ichisaka, T., and Yamanaka, S. 2007. Generation of germline-competent induced pluripotent stem cells. Nature 448:313-317.

    Article  CAS  PubMed  Google Scholar 

  13. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318-324.

    Article  CAS  PubMed  Google Scholar 

  14. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K. 2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771-775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang, C.W., Lai, Y.S., Pawlik, K.M., Liu, K., Sun, C.W., Li, C., Schoeb, T.R., and Townes, T.M. 2009. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042-1049.

    Article  CAS  PubMed  Google Scholar 

  16. Sommer, C.A., Sommer, A.G., Longmire, T.A., Christodoulou, C., Thomas, D.D., Gostissa, M., Alt, F.W., Murphy, G.J., Kotton, D.N., and Mostoslavsky, G. 2010. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64-74.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Somers, A., Jean, J.C., Sommer, C.A., Omari, A., Ford, C.C., Mills, J.A., Ying, L., Sommer, A.G., Jean, J.M., Smith, B.W., et al. 2010. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728-1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Papapetrou, E.P., Lee, G., Malani, N., Setty, M., Riviere, I., Tirunagari, L.M., Kadota, K., Roth, S.L., Giardina, P., Viale, A., et al. 2010. .Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol.

    Google Scholar 

  19. Papapetrou, E.P., and Sadelain, M. 2011. Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat Protoc 6:1251-1273.

    Article  CAS  PubMed  Google Scholar 

  20. Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766-770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yusa, K., Rad, R., Takeda, J., and Bradley, A. 2009. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363-369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Papapetrou, E.P., Lee, G., Malani, N., Setty, M., Riviere, I., Tirunagari, L.M., Kadota, K., Roth, S.L., Giardina, P., Viale, A., et al. 2011. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73-78.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez, F., Boue, S., and Izpisua Belmonte, J.C. 2011. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12:231-242.

    Article  CAS  PubMed  Google Scholar 

  24. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. 2008. Induced pluripotent stem cells generated without viral integration. Science 322:945-949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okita, K., Hong, H., Takahashi, K., and Yamanaka, S. 2010. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 5:418-428.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, and Thomson, J.A. 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797-801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Narsinh, K.H., Jia, F., Robbins, R.C., Kay, M.A., Longaker, M.T., and Wu, J.C. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat. Protocols 6:78-88.

    Google Scholar 

  28. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. 2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348-362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishimura, K., Sano, M., Ohtaka, M., Furuta, B., Umemura, Y., Nakajima, Y., Ikehara, Y., Kobayashi, T., Segawa, H., Takayasu, S., et al. 2010. Development of defective and persistent sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem.

    Google Scholar 

  30. Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., et al. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618-630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., et al. 2009. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381-384.

    Article  CAS  PubMed  Google Scholar 

  32. Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y., Lanza, R., et al. 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472-476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho, H.J., Lee, C.S., Kwon, Y.W., Paek, J.S., Lee, S.H., Hur, J., Lee, E.J., Roh, T.Y., Chu, I.S., Leem, S.H., et al. 2010. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 116:386-395.

    Article  CAS  PubMed  Google Scholar 

  34. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al. 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651-654.

    Article  CAS  PubMed  Google Scholar 

  35. Obokata, H., Wakayama, T., Sasai, Y., Kojima, K., Vacanti, M.P., Niwa, H., Yamato, M., and Vacanti, C.A. 2014. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505:641-647.

    Article  CAS  PubMed  Google Scholar 

  36. Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., et al. 2007. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920-1923.

    Article  CAS  PubMed  Google Scholar 

  37. Wu, L.C., Sun, C.W., Ryan, T.M., Pawlik, K.M., Ren, J., and Townes, T.M. 2006. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 108:1183-1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mali, P., Ye, Z., Hommond, H.H., Yu, X., Lin, J., Chen, G., Zou, J., and Cheng, L. 2008. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26:1998-2005.

    Article  CAS  PubMed  Google Scholar 

  39. Mali, P., Chou, B.K., Yen, J., Ye, Z., Zou, J., Dowey, S., Brodsky, R.A., Ohm, J.E., Yu, W., Baylin, S.B., et al. 2010. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28:713-720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chou, B.K., Mali, P., Huang, X., Ye, Z., Dowey, S.N., Resar, L.M., Zou, C., Zhang, Y.A., Tong, J., and Cheng, L. 2011. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518-529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sebastiano, V., Maeder, M.L., Angstman, J.F., Haddad, B., Khayter, C., Yeo, D.T., Goodwin, M.J., Hawkins, J.S., Ramirez, C.L., Batista, L.F., et al. 2011. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717-1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, M., Suzuki, K., Qu, J., Saini, P., Dubova, I., Yi, F., Lee, J., Sancho-Martinez, I., Liu, G.H., and Izpisua Belmonte, J.C. 2011. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 21:1740-1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye, L., Chang, J.C., Lin, C., Sun, X., Yu, J., and Kan, Y.W. 2009. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A 106:9826-9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y., Zheng, C.G., Jiang, Y., Zhang, J., Chen, J., Yao, C., Zhao, Q., Liu, S., Chen, K., Du, J., et al. 2012. Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res 22:637-648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan, Y., Luo, Y., Chen, X., Li, Q., and Sun, X. 2012. Generation of human beta-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 58:404–409.

    Google Scholar 

  46. Ma, N., Liao, B., Zhang, H., Wang, L., Shan, Y., Xue, Y., Huang, K., Chen, S., Zhou, X., Chen, Y., et al. 2013. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. J Biol Chem 288:34671–34679.

    Google Scholar 

  47. May, C., Rivella, S., Callegari, J., Heller, G., Gaensler, K.M., Luzzatto, L., and Sadelain, M. 2000. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406:82-86.

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, K.R., and Capecchi, M.R. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503-512.

    Article  CAS  PubMed  Google Scholar 

  49. Doetschman, T., Gregg, R.G., Maeda, N., Hooper, M.L., Melton, D.W., Thompson, S., and Smithies, O. 1987. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576-578.

    Article  CAS  PubMed  Google Scholar 

  50. Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J.B., Nishikawa, S., Muguruma, K., and Sasai, Y. 2007. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681-686.

    Article  CAS  PubMed  Google Scholar 

  51. Jasin, M. 1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224-228.

    Article  CAS  PubMed  Google Scholar 

  52. Porteus, M.H., and Carroll, D. 2005. Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967-973.

    Article  CAS  PubMed  Google Scholar 

  53. Paques, F., and Duchateau, P. 2007. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49-66.

    Article  CAS  PubMed  Google Scholar 

  54. Boch, J. 2011. TALEs of genome targeting. Nat Biotechnol 29:135-136.

    Article  CAS  PubMed  Google Scholar 

  55. Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. 2013. RNA-guided human genome engineering via Cas9. Science 339:823-826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zou, J., Mali, P., Huang, X., Dowey, S.N., and Cheng, L. 2011. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:4599-4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marion, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Capetillo, O., Serrano, M., and Blasco, M.A. 2009. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149-1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Biesecker, L.G., and Spinner, N.B. 2013. A genomic view of mosaicism and human disease. Nat Rev Genet 14:307-320.

    Article  CAS  PubMed  Google Scholar 

  59. Lupski, J.R. 2013. Genetics. Genome mosaicism--one human, multiple genomes. Science 341:358-359.

    Article  CAS  PubMed  Google Scholar 

  60. Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Izpisua Belmonte, J.C. 2009. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140-1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., Blasco, M.A., and Serrano, M. 2009. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136-1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. 2009. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132-1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Utikal, J., Polo, J.M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R.M., Khalil, A., Rheinwald, J.G., and Hochedlinger, K. 2009. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145-1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J., Consiglio, A., Castella, M., Rio, P., Sleep, E., et al. 2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gore, A., Li, Z., Fung, H.L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., et al. 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Amps, K., Andrews, P.W., Anyfantis, G., Armstrong, L., Avery, S., Baharvand, H., Baker, J., Baker, D., Munoz, M.B., Beil, S., et al. 2011. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132-1144.

    Article  CAS  PubMed  Google Scholar 

  67. Taapken, S.M., Nisler, B.S., Newton, M.A., Sampsell-Barron, T.L., Leonhard, K.A., McIntire, E.M., and Montgomery, K.D. 2011. Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29:313-314.

    Article  CAS  PubMed  Google Scholar 

  68. Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J.C., Yakir, B., Clark, A.T., Plath, K., Lowry, W.E., and Benvenisty, N. 2010. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521-531.

    Article  CAS  PubMed  Google Scholar 

  69. Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., et al. 2011. Copy number variation and selection during reprogramming to pluripotency. Nature 471:58-62.

    Article  CAS  PubMed  Google Scholar 

  70. Laurent, L.C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C., Harness, J.V., Lee, S., Barrero, M.J., et al. 2011. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106-118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martins-Taylor, K., Nisler, B.S., Taapken, S.M., Compton, T., Crandall, L., Montgomery, K.D., Lalande, M., and Xu, R.H. 2011. Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol 29:488-491.

    Article  CAS  PubMed  Google Scholar 

  72. Ji, J., Ng, S.H., Sharma, V., Neculai, D., Hussein, S., Sam, M., Trinh, Q., Church, G.M., McPherson, J.D., Nagy, A., et al. 2012. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30:435-440.

    Article  CAS  PubMed  Google Scholar 

  73. Abyzov, A., Mariani, J., Palejev, D., Zhang, Y., Haney, M.S., Tomasini, L., Ferrandino, A.F., Rosenberg Belmaker, L.A., Szekely, A., Wilson, M., et al. 2012. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492:438-442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Young, M.A., Larson, D.E., Sun, C.W., George, D.R., Ding, L., Miller, C.A., Lin, L., Pawlik, K.M., Chen, K., Fan, X., et al. 2012. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10:570-582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jonlin, E.C. 2014. Differing Standards for the NIH Stem Cell Registry and FDA Approval Render Most Federally Funded hESC Lines Unsuitable for Clinical Use. Cell Stem Cell 14:139-140.

    Article  CAS  PubMed  Google Scholar 

  76. Turner, M., Leslie, S., Martin, N.G., Peschanski, M., Rao, M., Taylor, C.J., Trounson, A., Turner, D., Yamanaka, S., and Wilmut, I. 2013. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13:382-384.

    Article  CAS  PubMed  Google Scholar 

  77. Taylor, C.J., Peacock, S., Chaudhry, A.N., Bradley, J.A., and Bolton, E.M. 2012. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147-152.

    Article  CAS  PubMed  Google Scholar 

  78. Gourraud, P.A., Gilson, L., Girard, M., and Peschanski, M. 2012. The role of human leukocyte antigen matching in the development of multiethnic "haplobank" of induced pluripotent stem cell lines. Stem Cells 30:180-186.

    Article  CAS  PubMed  Google Scholar 

  79. Riolobos, L., Hirata, R.K., Turtle, C.J., Wang, P.R., Gornalusse, G.G., Zavajlevski, M., Riddell, S.R., and Russell, D.W. 2013. HLA engineering of human pluripotent stem cells. Mol Ther 21:1232-1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., Sugiura, M., Ideno, H., Shimada, A., Nifuji, A., et al. 2013. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494:100-104.

    Article  CAS  PubMed  Google Scholar 

  81. Pearl, J.I., Kean, L.S., Davis, M.M., and Wu, J.C. 2012. Pluripotent stem cells: immune to the immune system? Sci Transl Med 4:164ps125.

    Google Scholar 

  82. Zhao, T., Zhang, Z.N., Rong, Z., and Xu, Y. 2011. Immunogenicity of induced pluripotent stem cells. Nature 474:212-215.

    Article  CAS  PubMed  Google Scholar 

  83. Guha, P., Morgan, J.W., Mostoslavsky, G., Rodrigues, N.P., and Boyd, A.S. 2013. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12:407-412.

    Article  CAS  PubMed  Google Scholar 

  84. Wakitani, S., Takaoka, K., Hattori, T., Miyazawa, N., Iwanaga, T., Takeda, S., Watanabe, T.K., and Tanigami, A. 2003. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42:162-165.

    Article  CAS  Google Scholar 

  85. Nussbaum, J., Minami, E., Laflamme, M.A., Virag, J.A., Ware, C.B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H., and Murry, C.E. 2007. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345-1357.

    Article  CAS  PubMed  Google Scholar 

  86. Bjorklund, L.M., Sanchez-Pernaute, R., Chung, S., Andersson, T., Chen, I.Y., McNaught, K.S., Brownell, A.L., Jenkins, B.G., Wahlestedt, C., Kim, K.S., et al. 2002. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344-2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fu, W., Wang, S.J., Zhou, G.D., Liu, W., Cao, Y., and Zhang, W.J. 2012. Residual undifferentiated cells during differentiation of induced pluripotent stem cells in vitro and in vivo. Stem Cells Dev 21:521-529.

    Article  CAS  PubMed  Google Scholar 

  88. Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., et al. 2009. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743-745.

    Article  CAS  PubMed  Google Scholar 

  89. Ben-David, U., Gan, Q.F., Golan-Lev, T., Arora, P., Yanuka, O., Oren, Y.S., Leikin-Frenkel, A., Graf, M., Garippa, R., Boehringer, M., et al. 2013. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12:167-179.

    Article  CAS  PubMed  Google Scholar 

  90. Yuan, S.H., Martin, J., Elia, J., Flippin, J., Paramban, R.I., Hefferan, M.P., Vidal, J.G., Mu, Y., Killian, R.L., Israel, M.A., et al. 2011. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 6:e17540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dubois, N.C., Craft, A.M., Sharma, P., Elliott, D.A., Stanley, E.G., Elefanty, A.G., Gramolini, A., and Keller, G. 2011. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011-1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hattori, F., Chen, H., Yamashita, H., Tohyama, S., Satoh, Y.S., Yuasa, S., Li, W., Yamakawa, H., Tanaka, T., Onitsuka, T., et al. 2010. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61-66.

    Article  CAS  PubMed  Google Scholar 

  93. Jung, J., Hackett, N.R., Pergolizzi, R.G., Pierre-Destine, L., Krause, A., and Crystal, R.G. 2007. Ablation of tumor-derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Hum Gene Ther 18:1182-1192.

    Article  CAS  PubMed  Google Scholar 

  94. Schuldiner, M., Itskovitz-Eldor, J., and Benvenisty, N. 2003. Selective ablation of human embryonic stem cells expressing a "suicide" gene. Stem Cells 21:257-265.

    Article  CAS  PubMed  Google Scholar 

  95. Papapetrou, E.P., and Sadelain, M. 2010. Reconstructing blood from induced pluripotent stem cells. F1000 Med Rep 2.

    Google Scholar 

  96. Slukvin, II. 2013. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood 122:4035-4046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lu, S.J., Feng, Q., Caballero, S., Chen, Y., Moore, M.A., Grant, M.B., and Lanza, R. 2007. Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 4:501-509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J.E., Cerdan, C., Levac, K., and Bhatia, M. 2005. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201:1603–1614.

    Google Scholar 

  99. Tian, X., Woll, P.S., Morris, J.K., Linehan, J.L., and Kaufman, D.S. 2006. Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 24:1370-1380.

    Article  CAS  PubMed  Google Scholar 

  100. Ledran, M.H., Krassowska, A., Armstrong, L., Dimmick, I., Renstrom, J., Lang, R., Yung, S., Santibanez-Coref, M., Dzierzak, E., Stojkovic, M., et al. 2008. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3:85-98.

    Article  CAS  PubMed  Google Scholar 

  101. Lu, M., Kardel, M.D., O'Connor, M.D., and Eaves, C.J. 2009. Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 37:924-936.

    Article  CAS  PubMed  Google Scholar 

  102. Suzuki, N., Yamazaki, S., Yamaguchi, T., Okabe, M., Masaki, H., Takaki, S., Otsu, M., and Nakauchi, H. 2013. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 21:1424-1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Amabile, G., Welner, R.S., Nombela-Arrieta, C., D'Alise, A.M., Di Ruscio, A., Ebralidze, A.K., Kraytsberg, Y., Ye, M., Kocher, O., Neuberg, D.S., et al. 2013. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 121:1255-1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sturgeon, C.M., Ditadi, A., Clarke, R.L., and Keller, G. 2013. Defining the path to hematopoietic stem cells. Nat Biotechnol 31:416-418.

    Article  CAS  PubMed  Google Scholar 

  105. Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R.C., Katibah, G.E., Amora, R., Boydston, E.A., Zeitler, B., et al. 2009. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851-857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hoxie, J.A., and June, C.H. 2012. Novel cell and gene therapies for HIV. Cold Spring Harb Perspect Med 2.

    Google Scholar 

  107. Hirose, S., Takayama, N., Nakamura, S., Nagasawa, K., Ochi, K., Hirata, S., Yamazaki, S., Yamaguchi, T., Otsu, M., Sano, S., et al. 2013. Immortalization of Erythroblasts by c-MYC and BCL-XL Enables Large-Scale Erythrocyte Production from Human Pluripotent Stem Cells. Stem Cell Reports 1:499-508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu, S.J., Feng, Q., Park, J.S., Vida, L., Lee, B.S., Strausbauch, M., Wettstein, P.J., Honig, G.R., and Lanza, R. 2008. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 112:4475-4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Qiu, C., Olivier, E.N., Velho, M., and Bouhassira, E.E. 2008. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood 111:2400-2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chang, K.H., Huang, A., Hirata, R.K., Wang, P.R., Russell, D.W., and Papayannopoulou, T. 2010. Globin phenotype of erythroid cells derived from human induced pluripotent stem cells. Blood 115:2553-2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chang, K.H., Bonig, H., and Papayannopoulou, T. 2011. Generation and characterization of erythroid cells from human embryonic stem cells and induced pluripotent stem cells: an overview. Stem Cells Int 2011:791604.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini P. Papapetrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papapetrou, E.P. (2017). Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. In: Malik, P., Tisdale, J. (eds) Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology(), vol 1013. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7299-9_9

Download citation

Publish with us

Policies and ethics