Skip to main content

Role of Interstitial Potassium

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

Interstitial potassium concentration, [K+], is modulated during muscle activity due to a number of different mechanisms: diffusion and active transport of K+ in combination with water fluxes. The relative significance of the various mechanisms for muscle function is quantified. The effect of interstitial [K+] locally on the single muscle fiber is discussed along with its effect on the cardiovascular and respiratory systems and its role in motor control. It is concluded that K+ may play a significant role in the prevention as well as the development of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian RH, Costantin LL & Peachey LD (1969). Radial spread of contraction in frog muscle fibres. Journal of Physiology (London) 204, 231–257.

    CAS  Google Scholar 

  • Andersen SLV & Clausen T (1993). Calcitonin gene-related peptide stimulates active Na+-K+ transport in rat soleus muscle. American Journal of Physiology 264, C419–C429.

    PubMed  CAS  Google Scholar 

  • Aukland K & Reed RK (1993). Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiological Reviews 73, 1–77.

    PubMed  CAS  Google Scholar 

  • Band DM & Linton RAF (1986). The effect of potassium on carotid body chemoreceptor discharge in the anaesthetized cat. Journal of Physiology (London) 381, 39–47.

    CAS  Google Scholar 

  • Barcroft H & Millen JLE (1939). The blood flow through muscle during sustained contraction. Journal of Physiology (London) 97, 17–31.

    CAS  Google Scholar 

  • Barker D & Saito M (1981). Autonomic innervation of receptors and muscle fibres in cat skeletal muscle. Proceedings of the Royal Society of London, Series B-Biological Sciences B212, 317–332.

    Article  Google Scholar 

  • Barnes WS (1993). Effects of Ca2+-channel drugs on K+-induced respiration in skeletal muscle. Medicine and Science in Sports and Exercise 25, 473–478.

    PubMed  CAS  Google Scholar 

  • Bergström J, Guarnieri G & Hultman E (1971). Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. Journal of Applied Physiology 30, 122–125.

    PubMed  Google Scholar 

  • Bergström J, Guarnieri G & Hultman E (1973). Changes in muscle water and electrolytes during exercise. In: Keul J. (ed.), Limiting Factors of Physical Performance, pp. 173–178. Stuttgart: Georg Thieme.

    Google Scholar 

  • Bigland-Ritchie BR, Dawson NJ, Johansson RS & Lippold OCJ (1986). Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379, 451–459.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Kukulka CG, Lippold OCJ & Woods JJ (1982). The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. Journal of Physiology (London) 330, 265–278.

    CAS  Google Scholar 

  • Brandstater ME & Lambert EH (1973). Motor unit anatomy. In Desmedt JE (ed.), New Developments in Electromyography and Clinical Neurophysiology, pp. 14–22. Basel: Karger

    Google Scholar 

  • Byström S & Sjøgaard G (1991). Potassium homeostasis during and following exhaustive submaximal static handgrip contractions. Acta Physiologica Scandinavica 142, 59–66.

    Article  PubMed  Google Scholar 

  • Castle NA & Haylett DG (1987). Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle. Journal of Physiology (London) 383, 31–43.

    CAS  Google Scholar 

  • Clausen T & Everts ME (1987). Is the Na, K-pump capacity in skeletal muscle inadequate during sustained work? In: Proceedings of the Vth International Conference on Na, K-ATPase. Århus, Denmark. June 14–19, New York: Alan Liss Inc.

    Google Scholar 

  • Clausen T & Everts ME (1989). Regulation of the Na, K-pump in skeletal muscle. Kidney International 35, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Clausen T & Everts ME (1991). K+-induced inhibition of contractile force in rat skeletal muscle: role of active Na+-K+ transport. American Journal of Physiology 261, C799–C807.

    PubMed  CAS  Google Scholar 

  • Clausen T, Everts ME & Kjeldsen K (1987). Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. Journal of Physiology (London) 388, 163–181.

    CAS  Google Scholar 

  • Creese R, Hashish S & Scholes NW (1958). Potassium movements in contracting diaphragm muscle. Journal of Physiology (London) 143, 307–324.

    CAS  Google Scholar 

  • Crone C, Frøkjær-Jensen J, Friedman JJ & Christensen O (1978). The permeability of single capillaries to potassium ions. Journal of General Physiology 71, 195–220.

    Article  PubMed  CAS  Google Scholar 

  • Davies NW, Standen NB & Stanfield PR (1992). The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle. Journal of Physiology (London) 445, 549–568.

    CAS  Google Scholar 

  • Dawes GS (1941). The vaso-dilator action of potassium. Journal of Physiology (London) 99, 224–238.

    CAS  Google Scholar 

  • De Lanne R, Barnes JR & Brouha L. (1959). Changes in osmotic pressure and ionic concentrations of plasma during muscular work and recovery. Journal of Applied Physiology 14, 804–808.

    Google Scholar 

  • Eisenberg RS & Gage PW (1969). Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibres. Journal of General Physiology 53, 219–291.

    Article  Google Scholar 

  • Enoka RM, Trayanova N, Laouris Y, Bevan L, Reinking RM & Stuart DG (1992). Fatigue-related changes in motor unit action potentials of adult cats. Muscle & Nerve 14, 138–150.

    Article  Google Scholar 

  • Everts ME, Lømo T & Clausen T (1993). Changes in K+, Na+ and calcium contents during in vivo stimulation of rat skeletal muscle. Acta Physiologica Scandinavica 147, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Everts ME, Retterstøl K & Clausen T (1988). Effects of adrenaline on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiologica Scandinavica 134, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Fallentin N, Jensen BR, Byström S & Sjøgaard G (1992). Role of potassium in the reflex regulation of blood pressure during static exercise in the human. Journal of Physiology (London) 451, 643–651.

    CAS  Google Scholar 

  • Fambrough DM, Wolitzky BA, Tamkim MM & Takeyasu K (1987). Regulation of the sodium pump in excitable cells. Kidney International 32 (suppl. 23), S97–S112.

    Google Scholar 

  • Fenn WO (1937). Loss of potassium in voluntary contraction. American Journal of Physiology 120, 675–680.

    CAS  Google Scholar 

  • Fenn WO (1938). Factors affecting the loss of potassium from stimulated muscles. American Journal of Physiology 124, 213–229.

    CAS  Google Scholar 

  • Fenn WO & Cobb DM (1936). Electrolyte changes in muscle during activity. American Journal of Physiology 115, 345–356.

    CAS  Google Scholar 

  • Fink R & Lüttgau HC (1976). An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. Journal of Physiology (London) 263, 215–238.

    CAS  Google Scholar 

  • Fitch S & McComas A (1985). Influence of human muscle length on fatigue. Journal of Physiology (London) 362, 205–213.

    CAS  Google Scholar 

  • Goodwin GM, McCloskey DI & Mitchell JH (1972). Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. Journal of Physiology (London) 226, 173–190.

    CAS  Google Scholar 

  • Hallén J, Gullestad L & Sejersted OM (1994). K+ shifts of skeletal muscle during stepwise bicycle exercise with and without α-adrenoceptor blockade. Journal of Physiology (London) 477, 149–159.

    Google Scholar 

  • Hazeyama Y & Sparks HV (1979). A model of potassium ion efflux during exercise of skeletal muscle. American Journal of Physiology 236, R83–R90.

    PubMed  CAS  Google Scholar 

  • Hicks A & McComas AJ (1989). Increased sodium pump activity following repetitive stimulation of rat soleus muscles. Journal of Physiology (London) 414, 337–349.

    CAS  Google Scholar 

  • Hirche H, Schumacher E & Hagemann H (1980). Extracellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise. Pflügers Archiv 387, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL & Horowicz P (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. Journal of Physiology (London) 148, 127–160.

    CAS  Google Scholar 

  • Jackson MJ, Jones DA & Edwards RHT (1984). Experimental skeletal muscle damage: The nature of the calcium-activated degenerative processes. European Journal of Clinical Investigation 14, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Jensen BR, Fallentin N, Sjøgaard G & Byström S (1993). Plasma potassium concentration and Doppler blood flow during and following submaximal handgrip contractions. Acta Physiologica Scandinavica 147, 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Johansson H & Sojka P (1991). Pathophysiological mechanisms involved in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: A hypothesis. Medical Hypotheses 35, 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Juel C (1986). Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Archiv 406, 458–463.

    Article  PubMed  CAS  Google Scholar 

  • Juel C (1988a). Is a Ca2+-dependent K+ channel involved in the K+ loss from active muscles? Acta Physiologica Scandinavica 132, P26.

    Article  Google Scholar 

  • Juel C. (1988b). The effect of beta2-adrenoceptor activation on ion-shifts and fatigue in mouse soleus muscles stimmulated in vitro. Acta Physiologica Scandinavica 134, 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Juel C, Bangsbo J, Graham T & Saltin B (1990). Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiologica Scandinavica 140, 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Kiens B, Saltin B, Walløe L & Wesche J (1989). Temporal relationship between blood flow changes and release of ions and metabolites from muscle upon single weak contractions. Acta Physiologica Scandinavica 136, 551–559.

    Article  PubMed  CAS  Google Scholar 

  • Kniffki KD, Mense S & Schmidt RF (1981). Muscle receptors with fine afferent fibres which may evoke circulatory reflexes. Circulation Research 48 (suppl I), 25–31.

    Google Scholar 

  • Kugelberg E & Edström L (1968). Differential histochemical effects of muscle contraction on phosphorylase and glycogen in various types of fibres: relation to fatigue. Journal of Neurology, Neurosurgery and Psychiatry 31, 415–423.

    Article  CAS  Google Scholar 

  • Kuiack S & McComas AJ (1992). Transient hyperpolarization of non-contracting muscle fibres in anaesthetized rats. Journal of Physiology (London) 454, 609–618.

    CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF, McKelvie RS & Jones NL (1990). Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise. American Journal of Physiology 258, R1486–R1494.

    PubMed  CAS  Google Scholar 

  • Lipman BS, Dunn M & Massie E (1984). Clinical Electrocardiography, pp. 268–271. Chicago: Year Book Medical Publishers Inc.

    Google Scholar 

  • Ludin HP (1970). Microelectrode study of dystrophic human skeletal muscle. European Neurology 3, 116–121.

    Article  PubMed  CAS  Google Scholar 

  • McComas AJ, Galea V & Einhorn RW (1994). Pseudofacilitation: a misleading term. Muscle & Nerve 17, 599–607.

    Article  CAS  Google Scholar 

  • McComas AJ, Galea V, Einhorn RW, Hicks AL & Kuiack S (1993). The role of the Na+, K+-pump in delaying muscle fatigue. In: Sargeant AJ, Kerneil D (eds.), Neuromuscular Fatigue, pp. 35-43. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

    Google Scholar 

  • Medbø JI & Sejersted OM (1985). Acid-base and electrolyte balance after exhausting exercise in endurancetrained and sprint-trained subjects. Acta Physiologica Scandinavica 125, 97–109.

    Article  PubMed  Google Scholar 

  • Medbø JI & Sejersted OM (1990). Plasma potassium changes with high intensity exercise. Journal of Physiology (London) 421, 105–122.

    Google Scholar 

  • Paterson DJ, Friedland JS, Bascom DA, Clement ID, Cunningham DA, Painter R & Robbins PA (1990). Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. Journal of Physiology (London) 429, 339–348.

    CAS  Google Scholar 

  • Renaud JM, Light PE & Comtois AS (1994). The effect of glibenclamide on frog skeletal muscle: evidence for K(ATP) + channel activation during fatigue. Abstracts, Ontario Exercise Physiology Meeting, (Toronto, Canada, February 1994).

    Google Scholar 

  • Rybicki KJ, Waldrop TG & Kaufman MP (1985). Increasing gracilis muscle interstitial potassium concentrations stimulate group III and IV afferents. Journal of Applied Physiology 58, 936–941.

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Sjøgaard G, Gaffney FA & Rowell LB (1981). Potassium, lactate, and water fluxes in human quadriceps muscle during static contractions. Circulation Research 48 (suppl I), I–18–1–24.

    Google Scholar 

  • Saltin B, Sjøgaard G, Strange S & Juel C (1987). Redistribution of K+ in the human body during muscular exercise; its role to maintain whole body homeostasis. In: Shiraki K, Yousef MK (eds.), Man in Stressful Environments. Thermal and Work Physiology, pp. 247–267. Springfield, IL: CC Thomas.

    Google Scholar 

  • Sejersted OM & Hallén J (1987). Na, K homeostasis of skeletal muscle during activation. In: Marconnet P, Komi P (eds.), Muscle Function in Exercise and Training. Medicine and Science in Sports, vol 26, pp. 1–11. Basel: Karger.

    Google Scholar 

  • Sejersted OM, Medbø JI, Orheim A & Hermansen L (1984). Relationship between acid-base status and electrolyte balance after maximal work of short duration. In: Marconnet P, Poortmans JR, Hermansen L. (eds.), Physiological Chemistry of Training and Detraining. Medicine and Science in Sports, vol 17, pp. 40–55. Basel: Karger.

    Google Scholar 

  • Sjøgaard G (1983). Electrolytes in slow and fast muscle fibers of humans at rest and with dynamic exercise. American Journal of Physiology 245, R25–R31.

    PubMed  Google Scholar 

  • Sjogaard G (1986). Water and electrolyte fluxes during exercise and their relation to muscle fatigue. Acta Physiologica Scandinavica 128 (suppl 556), 129–136.

    Google Scholar 

  • Sjogaard G (1990). Exercise-induced muscle fatigue: The significance of potassium. Acta Physiologica Scandinavica 140 (suppl. 593), 1–64.

    Google Scholar 

  • Sjøgaard G (1991). Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Canadian Journal of Physiology and Pharmacology 69, 238–245.

    Article  PubMed  Google Scholar 

  • Sjogaard G, Adams RP & Saltin B (1985). Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. American Journal of Physiology 248, R190–R196.

    PubMed  CAS  Google Scholar 

  • Sjogaard G & Saltin B (1985). Potassium redistribution within the body during exercise. Clinical Physiology 5 (suppl 4), 150.

    Google Scholar 

  • Sjøgaard G, Savard G & Juel C (1988). Muscle blood flow during isometric activity and its relation to muscle fatigue. European Journal of Applied Physiology and Occupational Physiology 57, 327–335.

    Article  PubMed  Google Scholar 

  • Spruce AE, Standen NB & Stanfield PR (1985). Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316, 736–738.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CK, Bigland-Ritchie B & Johansson RS (1991). Force-frequency relationships of human thenar motor units. Journal of Neurophysiology 65, 1509–1516.

    PubMed  CAS  Google Scholar 

  • Vyskocil F, Hnik P, Rehfeldt H, Vejsada R & Ujec E (1983). The measurement of Ke+ concentration changes in human muscles during volitional contractions. Pflügers Archiv 399, 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Vøllestad NK, Hallén J & Sejersted OM (1994). Effect of exercise intensity on potassium balance in muscle and blood of man. Journal of Physiology (London) 475, 359–368.

    Google Scholar 

  • Watson PD, Garner RP & Ward DS (1993). Water uptake in stimulated cat skeletal muscle. American Journal of Physiology 264, R790–R796.

    PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lamb AG, Bolsover SR & Allen DG (1990). Spatial gradients of intracellular calcium in skeletal muscle during fatigue. Pflügers Archiv 415, 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Woods JJ, Furbush F & Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sjøgaard, G., McComas, A.J. (1995). Role of Interstitial Potassium. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics