Skip to main content

Myofibrillar Fatigue versus Failure of Activation

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

Two principal mechanisms underlying fatigue of isolated muscle fibers are described: failure of activation of the contractile system and reduced performance of the myofibrils due to altered kinetics of crossbridge function. The relative importance of these two mechanisms during development of fatigue is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen D, Duty S & Westerblad H (1993). Letter to the editors. Journal of Muscle Research and Cell Motility 14, 543–544.

    Article  PubMed  CAS  Google Scholar 

  • Allen DG, Lee JA & Westerblad H (1989). Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. Journal of Physiology (London) 415, 433–458.

    CAS  Google Scholar 

  • Altringham JD & Johnston IA (1985). Effects of phosphate on the contractile properties of fast and slow muscle fibres from an antarctic fish. Journal of Physiology (London) 368, 491–500.

    CAS  Google Scholar 

  • Bigland-Ritchie BR, Dawson NJ, Johansson RS & Lippold OCJ (1986). Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379, 451–459.

    CAS  Google Scholar 

  • Brenner B (1980). Effect of free sarcoplasmic Ca2+ concentration on maximum unloaded shortening velocity: measurements on single glycerinated rabbit psoas muscle fibres. Journal of Muscle Research and Cell Motility 1, 409–428.

    Article  Google Scholar 

  • Caputo C, Edman KAP, Lou F & Sun Y-B (1994). Variation in myoplasmic Ca2+ concentration and relaxation studied by Fluo-3 in frog muscle fibres. Journal of Physiology (London) 478, 137–148.

    CAS  Google Scholar 

  • Cecchi G, Griffiths PJ & Taylor S (1986). Stiffness and force in activated frog skeletal muscle fibers. Biophysical Journal 49, 437–451.

    Article  PubMed  CAS  Google Scholar 

  • Chase PB & Kushmerick MJ (1988). Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophysical Journal 53, 935–946.

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Franks K, Luciani GB & Pate E (1988). The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. Journal of Physiology (London) 395, 77–91.

    CAS  Google Scholar 

  • Curtin NA & Edman KAP (1989). Effects of fatigue and reduced intracellular pH on segment dynamics in ‘isometric’ relaxation of frog muscle fibres. Journal of Physiology (London) 413, 150–174.

    Google Scholar 

  • Curtin NA & Edman KAP (1994). Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification. Journal of Physiology (London) 475, 483–494.

    CAS  Google Scholar 

  • Dantzig JA, Goldman YE, Millar NC, Lacktis J & Homsher E (1992). Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. Journal of Physiology (London) 451, 247–278.

    CAS  Google Scholar 

  • Dawson MJ, Gadian DG & Wilkie DR (1978). Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 274, 861–866.

    Article  PubMed  CAS  Google Scholar 

  • Dawson MJ, Gadian DG & Wilkie DR (1980). Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. Journal of Physiology (London) 299, 465–484.

    CAS  Google Scholar 

  • Delay M, Ribalet B & Vergara J (1986). Caffeine potentiation of calcium release in frog skeletal muscle fibres. Journal of Physiology (London) 375, 535–559.

    CAS  Google Scholar 

  • Eberstein A & Sandow A (1963). Fatigue mechanisms in muscle fibres. In: Gutman E, Hnik P (eds.), The Effect of Use and Disuse on Neuromuscular Functions, pp. 515–526. Prague: Nakladatelstvi Ceskoslovenske akademie ved Praha.

    Google Scholar 

  • Edman KAP (1979). The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. Journal of Physiology (London) 291, 143–159.

    CAS  Google Scholar 

  • Edman KAP (1988). Double-hyperbolic force-velocity relation in frog muscle fibres. Journal of Physiology (London) 404, 301–321.

    CAS  Google Scholar 

  • Edman KAP & Lou F (1990). Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres. Journal of Physiology (London) 424, 133–149.

    CAS  Google Scholar 

  • Edman KAP & Lou F (1992). Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres. Journal of Physiology (London) 457, 655–673.

    CAS  Google Scholar 

  • Edman KAP & Mattiazzi A (1981). Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres. Journal of Muscle Research and CellMotility 2, 321–334.

    Article  CAS  Google Scholar 

  • Edwards RHT, Hill DK & Jones DA (1975). Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. Journal of Physiology (London) 251, 287–301.

    CAS  Google Scholar 

  • Fabiato A & Fabiato F (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. Journal of Physiology (London) 276, 233–255.

    CAS  Google Scholar 

  • Ferenczi MA, Goldman YE & Simmons RM (1984). The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. Journal of Physiology (London) 350, 519–543.

    CAS  Google Scholar 

  • Fitts RH (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94.

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH & Holloszy JO (1978). Effects of fatigue and recovery on contractile properties of frog muscle. Journal of Applied Physiology 45, 899–902.

    PubMed  CAS  Google Scholar 

  • Garcia M, Gonzalez-Serratos H, Morgan JP, Perreault CL & Rozycka M (1991). Differential activation of myofibrils during fatigue in phasic skeletal muscle cells. Journal of Muscle Research and Cell Motility 12, 412–424.

    Article  PubMed  CAS  Google Scholar 

  • Garland SJ & McComas AJ (1990). Reflex inhibition of human soleus muscle during fatigue. Journal of Physiology (London) 429, 17–27.

    CAS  Google Scholar 

  • Godt RE & Nosek TM (1989). Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. Journal of Physiology (London) 412, 155–180.

    CAS  Google Scholar 

  • Gonzalez-Serratos H, Garcia M, Somlyo A, Somlyo AP & McClellan G (1981). Differential shortening of myofibrils during development of fatigue. Biophysical Journal 33, 224a.

    Google Scholar 

  • Hnik K, Holas M, Krekule I, Kriz N, Mejsnar J, Smiesko V, Ujec E & Vyskocil F (1976). Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes. Pflügers Archiv 362, 84–95.

    Article  Google Scholar 

  • Huxley AF (1957). Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry 7, 255–318.

    PubMed  CAS  Google Scholar 

  • Huxley AF & Simmons RM (1971). Proposed mechanism of force generation in striated muscle. Nature 233, 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Jones DA & Sacco P (1989). Failure of activation as the cause of fatigue in isolated mouse skeletal muscle. Journal of Physiology (London) 410, 75P.

    Google Scholar 

  • Juel C (1986). Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Archiv 406, 458–463.

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ & Morgan DL (1981). Variation of muscle stiffness with tension during tension gradients and constant velocity shortening in the frog. Journal of Physiology (London) 319, 193–203.

    CAS  Google Scholar 

  • Kanaya H, Takauyi M & Nagai T (1983). Properties of caffeine-and potassium-contractures in fatigued frog single twitch muscle fibres. Japanese Journal of Physiology 33, 945–954.

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Tanokura M & Yamada K (1988). Phosphorus nuclear magnetic resonance studies on the effect of duration of contraction in bull-frog skeletal muscle. Journal of Physiology (London) 407, 243–261.

    CAS  Google Scholar 

  • Kentish JC (1986). The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. Journal of Physiology (London) 370, 585–604.

    CAS  Google Scholar 

  • Klein MG, Simon BJ & Schneider MF (1990). Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. Journal of Physiology (London) 425, 599–626.

    CAS  Google Scholar 

  • Lännergren J & Westerblad H (1989). Maximum tension and force-velocity properties of fatigued single Xenopus muscle fibres studied by caffeine and high K+. Journal of Physiology (London) 409, 473–4

    Google Scholar 

  • Lee JA, Westerblad H & Allen DG (1991). Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis. Journal of Physiology (London) 433, 307–326.

    CAS  Google Scholar 

  • Lombardi V & Piazzesi G (1990). The contractile response during steady lengthening of stimulated frog muscle fibres. Journal of Physiology (London) 431, 141–171.

    CAS  Google Scholar 

  • Lynch GS & Williams DA (1994). The effect of lowered pH on the Ca2+-activated contractile characteristics of skeletal muscle fibres from endurance-trained rats. Experimental Physiology 79, 47–57.

    PubMed  CAS  Google Scholar 

  • Marsden CD, Meadows JC & Merton PA (1971). Isolated single motor units in human muscle and their rate of discharge during maximal voluntary effort. Journal of Physiology (London) 217, 12–13P.

    Google Scholar 

  • Metzger JM & Moss RL (1990). pH modulation of the kinetics of a Ca2+-sensitive cross-bridge state transition in mammalian single skeletal muscle fibres. Journal of Physiology (London) 428, 751–764.

    CAS  Google Scholar 

  • Nassar-Gentina V, Passonneau JV, Vergara JL & Rapoport SJ (1978). Metabolic correlates of fatigue and of recovery from fatigue in single frog muscle fibers. Journal of General Physiology 72, 593–606.

    Article  PubMed  CAS  Google Scholar 

  • Podolsky RJ & Teichholz LE (1970). The relation between calcium and contraction kinetics in skinned muscle fibres. Journal of Physiology (London) 211, 19–35.

    CAS  Google Scholar 

  • Spande JJ & Schottelius BA (1970). Chemical basis of fatigue in isolated mouse soleus muscle. American Journal of Physiology 219, 1490–1495.

    PubMed  CAS  Google Scholar 

  • Stienen GJM, Roosemalen MCM, Wilson MGA & Elzinga G (1990). Depression of force by phosphate in skinned skeletal muscle fibers of the frog. American Journal of Physiology 259, C349–357.

    PubMed  CAS  Google Scholar 

  • Stienen GJM, Versteeg PGA, Papp Z & Elzinga G (1992). Mechanical properties of skinned rabbit psoas and soleus muscle fibres during lengthening: effects of phosphate and Ca2+. Journal of Physiology (London) 451, 503–5

    CAS  Google Scholar 

  • Westerblad H & Allen DG (1991). Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. Journal of General Physiology 98, 615–635.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H & Allen DG (1993). The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. Journal of Physiology (London) 468, 729–140.

    CAS  Google Scholar 

  • Westerblad H, Duty S & Allen DG (1993). Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. Journal of Applied Physiology 75, 382–388.

    PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lamb AG, Bolsover SR & Allen DG (1990). Spatial gradients of intracellular calcium in skeletal muscle during fatigue. Pflügers Archiv 415, 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Woledge RC (1968). The energetics of tortoise muscle. Journal of Physiology (London) 197, 685–707.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edman, K.A.P. (1995). Myofibrillar Fatigue versus Failure of Activation. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics