Skip to main content

Metabolic Correlates of Fatigue from Different Types of Exercise in Man

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

It is well established that muscle fatigue, defined as a decline in maximal force generating capacity, is a common response to muscular activity. To what extent metabolic factors contribute to the reduced muscle function is still debated. Metabolic effects can affect muscle through different processes, either through a reduced ATP supply or by effects on EC-coupling or crossbridge dynamics. Observations from in vitro experiments are often extrapolated to interpret fatigue mechanisms from measurements performed in vivo, without recognizing that the biochemical reactions involved can be quite different depending upon such factors as activation pattern, mode and duration of exercise. During repeated submaximal contractions, there is a negligible accumulation of H+ and inorganic phosphate, and hence fatigue must be ascribed to other factors. Substrate depletion might contribute to exhaustion, but cannot explain the gradual loss of maximal force. Curiously, the energetic cost of contraction increases progressively during repeated isometric but not during concentric contractions. With contractions involving high-force or high power output, fatigue is better related to H2PO4 than to pH, but still other factors seem to play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bangsbo J, Johansen L, Quistorff B & Saltin B (1993). NMR and analytic biochemical evaluation of CrP and nucleotides in the human calf during muscle contraction. Journal of Applied Physiology 74, 2034–2039.

    PubMed  CAS  Google Scholar 

  • Bergström J (1962). Muscle electrolytes in man. Scandinavian Journal of Clinical and Laboratory Investigation Supplement (Oslo) 14, 9–88.

    Google Scholar 

  • Bigland-Ritchie B, Cafarelli E & Vøllestad NK (1986a). Fatigue of submaximal static contractions. Acta Physiologica Scandinavica 128, 137–148.

    Google Scholar 

  • Bigland-Ritchie B, Furbush F & Woods JJ (1986b). Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. Journal of Applied Physiology 61, 421–429.

    PubMed  CAS  Google Scholar 

  • Cheetham ME, Boobis LH, Brooks S & Williams C (1986). Human muscle metabolism during sprint running. Journal of Applied Physiology 61, 54–60.

    PubMed  CAS  Google Scholar 

  • Cooke R & Bialek W (1979). Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophysical Journal 28, 241–258.

    Article  PubMed  CAS  Google Scholar 

  • Cooke R & Pate E (1985). The effects of ADP and phosphate on the contraction of muscle fibers. Biophysical Journal 48, 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Degroot M, Massie B, Boska M, Gober J, Miller RG & Weiner MW (1993). Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle &Nerve 16, 91–98.

    Article  CAS  Google Scholar 

  • Donaldson SKB & Hermansen L (1978). Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflügers Archiv 376, 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Edwards RHT (1976). Metabolic changes during isometric contractions of the quadriceps muscle. In: Jokl E (ed.), Medicine and Sport, vol. 9, pp. 114–131. Basel: Karger.

    Google Scholar 

  • Edwards RHT, Hill DH & Jones DA (1975). Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. Journal of Physiology (London) 251, 287–301.

    CAS  Google Scholar 

  • Essén B & Häggmark T (1975). Lactate concentration in type I and II muscle fibres during muscle contraction in man. Acta Physiologica Scandinavica 95, 344–346.

    Article  PubMed  Google Scholar 

  • Fitts RH (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94.

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD, Armstrong RB, Saubert CW, IV, Sembrowich WL, Sherpherd RE & Saltin B (1973). Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pflügers Archiv 344, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD, Piehl K & Saltin B (1974). Selective glycogen depletion pattern in human muscle fibers after exercise of varying intensity and at varying pedalling rates. Journal of Physiology (London) 241, 45–57.

    CAS  Google Scholar 

  • Hermansen L & Vaage O (1977). Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. American Journal of Physiology 233, E422–E429.

    PubMed  CAS  Google Scholar 

  • Katz A, Sahlin K & Henriksson J (1986). Muscle ATP turnover rate during isometric contraction in humans. Journal of Applied Physiology 60, 1839–1842.

    Article  PubMed  CAS  Google Scholar 

  • Le Rumeur E, Le Moyec L, Toulouse P, Le Bars R & de Certaines JD (1990). Muscle fatigue unrelated to phosphocreatine and pH: an “in vivo” 31-P NMR spectroscopy study. Muscle & Nerve 13, 438–444.

    Article  Google Scholar 

  • Lundsgaard E (1930). Untersuchungen über muskelkontraktionen ohne Milchsäurebildung. Biochemische Zeitshrift 217, 162–175.

    CAS  Google Scholar 

  • McCartney N, Heigenhauser GJF, Sargeant AJ & Jones NL (1983). A constant-velocity cycle ergometer for the study of dynamic muscle function. Journal of Applied Physiology 55, 212–217.

    PubMed  CAS  Google Scholar 

  • Miller RG, Boska MD, Moussavi RS, Carson PJ & Weiner MW (1988). 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Journal of Clinincal Investigation 81, 1190–1196.

    Article  CAS  Google Scholar 

  • Quistorff B, Johansen L & Sahlin K (1992). Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochemical Journal 291, 681–686.

    Google Scholar 

  • Sahlin K, Cizinsky S, Warholm M & Höberg J (1992). Repetitive static muscle contractions in humans-a trigger of metabolic and oxidative stress? European Journal of Applied Physiology and Occupational Physiology 64, 228–236.

    Article  PubMed  CAS  Google Scholar 

  • Sejersted OM (1992). Electrolyte imbalance in body fluids as a mechanism of fatigue. In: Lamb DR, Gisolfi CV (eds.), Energy Metabolism in Exercise and Sport (Perspectives in Exercise Science and Sports Medicine), pp 149–207. Carmel, IN: Brown & Benchmark.

    Google Scholar 

  • Sejersted OM & Vøllestad NK (1993). Physiology of muscle fatigue and associated pain. In: Vaeroy H, Merskey H (eds.), Progress in fibromyalgia and myofascial pain, pp. 41–51. Amsterdam: Elsevier Science Publications.

    Google Scholar 

  • Söderlund K, Greenhaff PL & Hultman E (1992). Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies. Acta Physiologica Scandinavica 144, 15–22.

    Article  PubMed  Google Scholar 

  • Söderlund K & Hultman E (1986). Effects of delayed freezing on content of phosphagens in human skeletal muscle biopsy samples. Journal of Applied Physiology 61, 832–835.

    PubMed  Google Scholar 

  • Thorstensson A & Karlsson J (1976). Fatiguability and fibre composition of human skeletal muscle. Acta Physiologica Scandinavica 98, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Vøllestad NK & Blom PCS (1985). Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiologica Scandinavica 125, 395–405.

    Article  PubMed  Google Scholar 

  • Vøllestad NK, Sejersted I, Saugen E (1995) Increased relaxation rates during and following intermittent submaximal isometric contractions. Clinical Physiology In press.

    Google Scholar 

  • Vøllestad NK, Sejersted OM, Bahr R, Woods JJ & Bigland-Ritchie B (1988). Motor drive and metabolic responses during repeated submaximal contractions in man. Journal of Applied Physiology 64, 1421–1427.

    PubMed  Google Scholar 

  • Vøllestad NK, Tabata I & Medbø JI (1992). Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiologica Scandinavica 144, 135–141.

    Article  PubMed  Google Scholar 

  • Vøllestad NK, Vaage O & Hermansen L (1984). Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man. Acta Physiologica Scandinavica 122, 433–441.

    Article  PubMed  Google Scholar 

  • Vøllestad NK, Wesche J & Sejersted OM (1990). Gradual increase in leg oxygen uptake during repeated submaximal contractions in humans. Journal of Applied Physiology 68, 1150–1156.

    PubMed  Google Scholar 

  • Wilson JR, McCully KK, Mancini DM, Boden B & Chance B (1988). Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study. Journal of Applied Physiology 63, 2333–2339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vøllestad, N.K. (1995). Metabolic Correlates of Fatigue from Different Types of Exercise in Man. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics