Skip to main content

Estimation and software

  • Chapter
Explanatory Item Response Models

Abstract

The aim of this last chapter is threefold. First, we want to give the reader further insights into the estimation methods for the models presented in this volume. Second, we want to discuss the available software for the models presented in this volume. We will not sketch all possibilities of the software, but only those directly relevant to item response modeling as seen in this volume. Third, we want to illustrate the use of various programs for the estimation of a basic model, the Rasch model, for the verbal aggression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., & Stegun, I. (1974). Handbook of Mathematical Functions. New York: Dover Publications.

    Google Scholar 

  • Adams, R.J., Wilson, M.R., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.

    Article  Google Scholar 

  • Andersen, E.B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society, Series B, 32, 283–301.

    MATH  Google Scholar 

  • Andersen, E.B. (1980). Discrete Statistical Models with Social Science Applications. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of the EM algorithm. Psychometrika, 46, 443–459.

    Article  MathSciNet  Google Scholar 

  • Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9–25.

    MATH  Google Scholar 

  • Breslow, N.E., & Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82, 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  • Browne, W.J., & Draper, D. (2003). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Manuscript submitted for publication.

    Google Scholar 

  • Bryk, A.S., & Raudenbush, S.W. (1992). Hierarchical Linear Models: Applications and Data Analysis Methods. London: Sage.

    Google Scholar 

  • Bunday, B.D. (1984). Basic Optimisation Methods. London: Edward Arnold.

    Google Scholar 

  • Cowles, K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91, 883–904.

    Article  MathSciNet  MATH  Google Scholar 

  • Cytel Software Corporation (2000). EGRET for Windows, User Manual.

    Google Scholar 

  • Dempster, A.P., Laird, N.M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Everitt, B.S. (1987). Optimisation Methods and their Applications in Statistics. London: Chapman & Hall.

    Book  Google Scholar 

  • Gelfand, A. E., & Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis. London: Chapman and Hall.

    MATH  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  • Gill, P.E., Murray, W., & Wright, M.H. (1981). Practical Optimization. New York: Academic Press.

    MATH  Google Scholar 

  • Goldstein, H. (1989). Restricted unbiased iterative generalized least squares estimation. Biometrika, 76, 622–623.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, H. (1991). Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78, 45–51.

    Article  MathSciNet  Google Scholar 

  • Goldstein, H. (2003). Multilevel Statistical Models (3rd ed.). London: Arnold.

    MATH  Google Scholar 

  • Goldstein, H. & Rasbash, J. (1996). Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society A, 159, 505–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, H., Rasbash, J., Plewis, L, Draper, D., Browne, W., Yang, M., Woodhouse, G., & Healy, M. (1998). User’s Guide to MLwiN. Multilevel Models Project, University of London.

    Google Scholar 

  • Hedeker, D. (1999). MIXNO: A computer program for mixed-effects nominal logistic regression. Computer software and manual.

    Google Scholar 

  • Hedeker, D., & Gibbons, R.D. (1994). A random-effects ordinal regression model for multilevel analysis. Biometrics, 50, 933–944.

    Article  MATH  Google Scholar 

  • Hedeker, D., & Gibbons, R.D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157–176.

    Article  Google Scholar 

  • Heinen, T. (1996). Latent Class and Discrete Latent Trait Models: Similarities and Differences. Thousand Oaks, CA: Sage.

    Google Scholar 

  • JÅ‘reskog, K.G. & SÅ‘rbom, D. (2003). LISREL 8.5 for Windows. Lincolnwood, IL: Scientific Software.

    Google Scholar 

  • Laird, N.M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805–811.

    Article  MathSciNet  MATH  Google Scholar 

  • Lange, K. (1999). Numerical Methods for Statisticians. New York: Wiley.

    Google Scholar 

  • Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50, 325–335.

    MathSciNet  MATH  Google Scholar 

  • Lin, X. and Breslow, N.E. (1996). Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association, 91, 1007–1016.

    Article  MathSciNet  MATH  Google Scholar 

  • Littell, R., Milliken, G., Stroup, W., & Wolfinger, R. (1996). SAS System for Mixed Models. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Liu, Q., & Pierce, D.A. (1994). A note on Gauss-Hermite quadrature. Biometrika, 81, 624–624.

    MathSciNet  MATH  Google Scholar 

  • Longford, N.T. (1993). Random Coefficients Models. Oxford: Clarendon Press.

    Google Scholar 

  • McCulloch, C.E., & Searle, S.R. (2001). Generalized, Linear, and Mixed Models. New York: Wiley.

    MATH  Google Scholar 

  • McLachlan, G.J. & Krishnan, T. (1997). The EM Algorithm and Extensions. New York: Wiley.

    MATH  Google Scholar 

  • Metropolis, N. & Ulam, S. (1949) The Monte Carlo Method. Journal of the American Statistical Association, 44, 335–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

    Article  Google Scholar 

  • Molenaar, I. (1995). Estimation of item parameters. In G.H. Fischer & I. Molenaar (Eds), Rasch Models. Foundations, Recent Developments and Applications (pp. 39–57). New York: Springer.

    Google Scholar 

  • Muthén, B., & Muthén, L. (2003). Mplus version 2.14- Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  • Naylor, J.C., & Smith, A.F.M. (1982). Applications of a method for the efficient computation of posterior distributions. Applied Statistics, 31, 214–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Neyman, J., & Scott, E.L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    Article  MathSciNet  Google Scholar 

  • Pinheiro, P.C. and Bates, D.M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 12–35.

    Google Scholar 

  • Pinheiro, P.C. and Bates D.M. (2000). Mixed-Effects Models in S and S-PLUS. New-York: Springer.

    Book  MATH  Google Scholar 

  • Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001). GLLAMM Manual. Technical Report 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, King’s College, University of London.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1–21.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (in press). Generalized multilevel structural equation modeling. Psychometrika.

    Google Scholar 

  • Raudenbush, S.W., Yang, M.-L., & Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141–157.

    MathSciNet  Google Scholar 

  • Raudenbush, S.W., Bryk, A.S., Cheong, Y., & Longdon, R.T. (2000). HLM5: Hierarchical Linear and Nonlinear Modeling. Chicago: Scientific Software International.

    Google Scholar 

  • Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical Linear Models. Applications and Data Analysis Methods. Newbury Park, CA: Sage.

    Google Scholar 

  • Rodriguez, G. and Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society A, 158, 73–89.

    Article  Google Scholar 

  • SAS Institute (1999). SAS Online Doc (Version 8) (software manual on CD-Rom). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schall, R. (1991). Estimation in generalised linear models with random effects. Biometrika, 78, 719–727.

    Article  MATH  Google Scholar 

  • Shun, Z., & McCullagh, P. (1995). Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society B, 57, 749–760.

    MathSciNet  MATH  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267–287.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. (2003). BUGS: Bayesian inference using Gibbs sampling. MRC Biostatistics Unit, Cambridge, England, http://www.mrc-bsu.cam.ac.uk/bugs/

    Google Scholar 

  • Stiratelli, R., Laird, N., and Ware, J.H. (1984). Random-effects model for serial observations with binary response. Biometrics, 40, 961–971.

    Article  Google Scholar 

  • Tanner, M.A. (1996). Tools for Statistical Inference (3rd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Thissen, D., Chen, W.-H, & Bock, R.D. (2002). MULTILOG7. Lincolnwood, IL: Scientific Software.

    Google Scholar 

  • Tierny, L., & Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81, 82–86.

    Article  MathSciNet  Google Scholar 

  • Verhelst, N.D., & Glas, C.A.W., & Verstralen, H.H.F.M. (1994). One Parameter Logistic Model (computer program and manual). Arnhem, The Netherlands: CITO.

    Google Scholar 

  • Wolfinger, R.D., & Lin, X. (1997). Two Taylor-series approximation methods for nonlinear mixed models. Computational Statistics and Data Analysis, 25, 465–490.

    Article  MATH  Google Scholar 

  • Wolfinger, R., & O’Connell, M. (1993). Generalized linear mixed models: A pseudo-likelihood approach. Journal of Statistical Computing and Simulation, 48, 233–243.

    Article  MATH  Google Scholar 

  • Woodhouse, G. (1991). Multilevel item response models. In R. Prosser, J. Rasbash, & H. Goldstein (Eds.), Data Analysis with MLS (pp. 19–43). London: Institute of Education.

    Google Scholar 

  • Wu, M.L., Adams, R.J., & Wilson, M. (1998). ACER Conquest. Hawthorn, Australia: ACER Press.

    Google Scholar 

  • Zeger, S.L. and Karim, M.R. (1991). Generalised linear models with random effects: a Gibbs sampling approach; Journal of the American Statistical Association, 86, 79–102.

    Article  MathSciNet  Google Scholar 

  • Zimowski, M., Muraki, E., Mislevy, R.J., & Bock, R.D. (1995). BILOG-MG: Multiple-Group Item Analysis and Test Scoring. Chicago, IL: Scientific Software.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuerlinckx, F. et al. (2004). Estimation and software. In: De Boeck, P., Wilson, M. (eds) Explanatory Item Response Models. Statistics for Social Science and Public Policy. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3990-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3990-9_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2323-3

  • Online ISBN: 978-1-4757-3990-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics