Skip to main content

Intrinsic Control Mechanisms of Pain Perception

  • Chapter
Consciousness and Self-Regulation

Abstract

Through the course of evolution, the brain has become increasingly able to respond adaptively to the ever-changing internal and external sensory world. To do so, it must continually monitor the environment through specialized sensory systems. One might imagine that the brain passively receives environmental inputs, processes them, and responds accordingly. We are learning instead that some sensory information can be modulated before it reaches the brain by the activation of centrifugal paths descending from higher central nervous system stations to lower ones in the brain, in the spinal cord, and even in the periphery. Thus, it appears to be important, at least at certain times, that some inputs never reach the brain or arrive only after considerable modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ader, R. (1975). Early experience and hormones: Emotional behavior and adrenocortical function. In B. E. ELEFTHERIOU and R. SPROTT (Eds.), Hormonal correlates of behavior. New York: Plenum Press, pp. 7–33.

    Google Scholar 

  • Ader, R. (1981). Psychoneuroimmunology. New York: Academic Press.

    Google Scholar 

  • Akil, H., Mayer, D. J., and Liebeskind, J. C. (1972). Comparaison chez le rat entre l’analgésie induite par stimulation de la substance grise péri-aqueducale et l’analgésie morphinique. Comptes Rendus de l’Académie des Sciences (Paris), 274, 3603–3605.

    Google Scholar 

  • Akil, H., Madden, J., Patrick, R. L., and Barchas, J. D. (1976a). Stress-induced increase in ‘endogenous opiate peptides; concurrent analgesia and its partial reversal by naloxone. In H. W. KOSTERLITZ (Ed.), Opiates and endogenous opioid peptides. Amsterdam: Elsevier, pp. 63–70.

    Google Scholar 

  • Akil, H., Mayer, D. J., and Liebeskind, J. C. (1976b). Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science, 191 961–962.

    Article  PubMed  Google Scholar 

  • Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachturian, H., and Walker, J. M. (1984). Endogenous opioids: Biology and function. Annual Review of Neuroscience, 7, 223–255.

    Article  PubMed  Google Scholar 

  • Amir, S., and Amit, Z. (1978). Endogenous opioid ligands may mediate stress-induced changes in the affective properties of pain related behavior in rats. Life Sciences, 23, 1143–1152.

    Article  PubMed  Google Scholar 

  • Amir, S., Amit, Z. (1979). The pituitary gland mediates acute and chronic pain responsiveness in stressed and non-stressed rats. Life Sciences, 24, 439–448.

    Article  PubMed  Google Scholar 

  • Azami, J., Llewelyn, M. B., and Roberts, H. H. T. (1982). The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Pain, 12, 229–246.

    Article  PubMed  Google Scholar 

  • Bardo, M. T., Bhatnagar, R. K., and Gebhart, G. F. (1981). Opiate receptor ontogeny and morphine-induced effects: Influence of chronic footshock stress in preweanling rats. Developmental Brain Research, 1, 487–495.

    Article  Google Scholar 

  • Basbaum, A. I., Marley, N. J., O’keefe, J., and Clanton, C. H. (1977). Reversal of morphine and stimulus produced analgesia by subtotal spinal cord lesions. Pain, 3, 43–56.

    Google Scholar 

  • Bodnar, R. J., Glusman, M., Brutus, M., Spiaggia, A., and Kelly, D. D. (1979). Analgesia induced by cold-water stress: Attenuation following hypophysectomy. Physiology and Behavior, 23, 53–62.

    Article  PubMed  Google Scholar 

  • Bodnar, R. J., Kelly, D. D., Spiaggia, A., Ehrenberg, C., and Glusman, M. (1978a). Dosedependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacology, Biochemistry, and Behavior, 8, 667–672.

    Google Scholar 

  • Bodnar, R. J., Kelly, D. D., Spiaggia, A., and Glusman, M. (1978b). Biphasic alterations of nociceptive thresholds induced by food deprivation. Physiological Psychology, 6, 39 1395.

    Google Scholar 

  • Bodnar, R. J., Kelly, D. D., Steiner, S. S., and Glusman, M. (1978c). Stress-produced analgesia and morphine-produced analgesia: Lack of cross-tolerance. Pharmacology, Biochemistry, and Behavior, 8, 661–666.

    Google Scholar 

  • Cannon, J. T., Lewis, J. W., Weinberg, V. E., and Liebeskind, J. C. (1983). Evidence for the independence of brain stem mechanisms mediating analgesia induced by morphine and two forms of stress. Brain Research, 269, 231–236.

    Article  PubMed  Google Scholar 

  • Cannon, J. T., Prieto, G. J., Lee, A., and Liebeskind, J. C. (1982). Evidence for opioid and nonopioid forms of stimulation-produced analgesia in the rat. Brain Research, 243, 315321.

    Google Scholar 

  • Chance, W. T. (1980). Autoanalgesia: Opiate and non-opiate mechanisms. Neuroscience and Biobehavior Review, 4, 55–67.

    Article  Google Scholar 

  • Chance, W. T., and Rosecrans, J. A. (1979a). Lack of cross-tolerance between morphine and autoanalgesia. Pharmacology, Biochemistry, and Behavior, 11, 639–642.

    Google Scholar 

  • Chance, W. T., and Rosecrans, J. A. (1979b). Lack of effect of naloxone on autoanalgesia. Pharmacology, Biochemistry, and Behavior, 11, 643–646.

    Google Scholar 

  • Chance, W. T., White, A. C., Krynock, G. M., and Rosecrans, J. A. (1977). Autoanalgesia: Behaviorally activated antinociception. European Journal of Pharmacology, 44, 283–284.

    Article  PubMed  Google Scholar 

  • Chance, W. T., White, A. C., Krynock, G. M., and Rosecrans, J. A. (1978). Conditional fear-induced decreases in the binding of (3H)-N-Leu-enkephalin to rat brain. Brain Research, 14I, 371–374.

    Article  Google Scholar 

  • Chesher, G. B., and Chan, B. (1977). Footshock induced analgesia in mice: Its reversal by naloxone and cross-tolerance with morphine. Life Sciences, 21, 1569–1574.

    Article  PubMed  Google Scholar 

  • Crowley, W. R., Rodriguez-Sierra, J. F., and Komisaruk, B. R. (1977). Analgesia induced by vaginal stimulation in rats is apparently independent of a morphine-sensitive process. Psychopharmacology, 54, 223–225.

    Article  PubMed  Google Scholar 

  • D’amour, F. E., and Smith, D. L. (1941). A method for determining loss of pain sensation. Journal of Pharmacology and Experimental Therapeutics, 72, 74–79.

    Google Scholar 

  • Dennis, S. G., Choiniere, M., and Melzack, R. (1980). Stimulation-produced analgesia in rats: Assessment by two pain tests and correlation with self-stimulation. Experimental Neurology, 68, 295–309.

    Article  PubMed  Google Scholar 

  • Dennis, S. G., and Melzack, R. (1980). Pain modulation by 5-hydroxytryptaminergic agents and morphine as measured by three pain tests. Experimental Neurology, 69, 260–270.

    Article  PubMed  Google Scholar 

  • Fields, H. L. (1984). Brainstem mechanisms of pain modulation. In L. KRUGER and J. C. LIEBESKIND (Eds.), Neural mechanisms of pain. Advances in Pain Research and Therapy, Vol. 6. New York: Raven Press, pp. 252.

    Google Scholar 

  • Fields, H. L., and Basbaum, A. I. (1979). Anatomy and physiology of a descending pain control system. In J. J. BONICA, J. C. LIEBESKIND, and D. G. ALBE-FESSARD (Eds.), Advances in pain research and therapy, Vol. 3. New York: Raven Press, pp. 427–440.

    Google Scholar 

  • Geisler, G. J., and Liebeskind, J. C. (1976). Inhibition of visceral pain by electrical stimulation of the periaqueductal gray matter. Pain, 2, 43–48.

    Article  Google Scholar 

  • Glick, S., and Crane, L. A. (1978). Opiate-like and abstinence-like effects of intracerebral histamine administration in rats. Nature, 273, 547–549.

    Article  PubMed  Google Scholar 

  • Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F. (1977). 13-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science, 197, 1367–1369.

    Google Scholar 

  • Hayes, R. L., Bennett, G. J., Newlon, P. G., and Mayer, D. J. (1976). Analgesic effects of certain noxious and stressful manipulations in the rat. Society for Neuroscience Abstracts, 2, 939.

    Google Scholar 

  • Hayes, R. L., Bennett, G. J., Newlon, P. G., and Mayer, D. J. (1978). Behavioral and physiological studies of non-narcotic analgesia in the rat elicited by certain environmental stimuli. Brain Research, 155, 69–90.

    Article  PubMed  Google Scholar 

  • Hayes, R. L., Price, D. D., Benneii, G. J., Wilcox, G. L., and Mayer, D. J. (1978b). Differential effects of spinal cord lesions on narcotic and non-narcotic suppression of nociceptive reflexes: Further evidence for the physiological multiplicity of pain modulation. Brain Research, 155, 91–102.

    Article  PubMed  Google Scholar 

  • Hokeelt, T., Ljungdahl, A., Terenius, L., Elde, R., and Nilson, G. (1977). Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P. Proceedings of the National Academy of Sciences, 74, 3081–3085.

    Article  Google Scholar 

  • Hosobuchi, Y., Adams, J. E., and Lincxrrz, R. (1977). Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science, 197, 183–186.

    Article  PubMed  Google Scholar 

  • Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R. (1976). Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 258, 577–579.

    Article  Google Scholar 

  • Jackson, R. L., Maier, S. F., and Coon, D. J. (1979). Long-term analgesic effects of inescapable shock and learned helplessness. Science, 206, 91–93.

    Article  PubMed  Google Scholar 

  • Jensen, T. S. and Smith, D. F. (1981). The role of consciousness in stress-induced analgesia. Journal of Neural Transmission, 52, 55–60.

    Article  PubMed  Google Scholar 

  • Klein, M. V., Lovaas, K. M., Terman, G. W., and Liebeskind, J. C. (1983). The effects of decerebration and spinal transection on three discrete forms of stress-induced analgesia. Society for Neuroscience Abstracts, 9, 795.

    Google Scholar 

  • Klein, M. V., Terman, G. W., and Liebeskind, J. C. (1984). Effects of pentobarbital on three forms of stress-induced analgesia. Society for Neuroscience Abstracts, 10, 1105.

    Google Scholar 

  • Laudenslager, M. L., Ryan, S. M., Drugan, R. C., Hyson, R. L., and Maier, S. F. (1982). Coping and immunosuppression: Inescapable but not escapable shock suppresses lymphocyte proliferation. Science, 221, 568–570.

    Article  Google Scholar 

  • Levy, S. M. Biological mediators of behavior and disease: Neoplasia. New York: Elsevier Biomedical.

    Google Scholar 

  • Lewis, J. W., Cannon, J. T., and Liebeskind, J. C. (1980a). Opioid and nonopoid mechanisms of stress analgesia. Science, 208, 623–625.

    Article  PubMed  Google Scholar 

  • Lewis, J. W., Cannon, J. T., and Liebeskind, J. C. (1983a). Involvement of central muscarinic cholinergic mechanisms in opioid stress analgesia. Brain Research, 270, 289–293.

    Article  PubMed  Google Scholar 

  • Lewis, J. W., Cannon, J. T., Stapleton, J. M., and Liebeskind, J. C. (1980b). Stress activates endogenous pain-inhibitory systems: Opioid and nonopioid mechanisms. Proceedings of the Western Pharmacology Society, 23, 85–88.

    PubMed  Google Scholar 

  • Lewis, J. W., Cannon, J. T., Liebeskind, J. C., and Akil, H. (1981a). Alterations in brain ß-endorphin immunoreactivity following acute and chronic stress. Pain, Supplement 1, S263.

    Google Scholar 

  • Lewis, J. W., Chudler, E. H., Cannon, J. T., and Liebeskind, J. C. (1981b). Hypophysectomy differentially affects morphine and stress analgesia. Proceedings of the Western Pharmacology Society, 24, 323–326.

    PubMed  Google Scholar 

  • Lewis, J. W., Shavit, Y., Terman, G. W., Gale, R. P., and Liebeskind, J. C. (1983–84). Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B.) Natural Immunity and Cell Growth Regulation, 3, 43–50.

    Google Scholar 

  • Lewis, J. W., Shavit, Y., Terman, G. W., Nelson, L. R., Gale, R. P., and Liebeskind, J. C. (1983b). Apparent involvement of opioid peptides in stress-induced enhancement of tumor growth. Peptides, 4, 635–638.

    Article  PubMed  Google Scholar 

  • Lewis, J. W., Sherman, J. E., and Liebeskind, J. C. (1981c). Opioid and nonopioid stress analgesia: Assessment of tolerance and cross-tolerance with morphine. Journal of Neuroscience, 1, 358–363.

    PubMed  Google Scholar 

  • Lewis, J. W., Stapleton, J. M., Castiglioni, A. J., and Liebeskind, J. C. (1982a). Stimulation-produced analgesia and intrinsic mechanisms of pain suppression. In G. FINK and L. J. WHALLEY (Eds.), Neuropeptides-Basic and clinical aspects. Edinburgh: Churchill Livingstone, pp. 41–49.

    Google Scholar 

  • Lewis, J. W., Terman, G. W., Watkins, L. R., Mayer, D. J., and Liebeskind, J. C. (1983c). Opioid and nonopioid mechanisms of footshock-induced analgesia: Role of the spinal dorsolateral funiculus. Brain Research, 269, 231–236.

    Article  PubMed  Google Scholar 

  • Lewis, J. W., Tordoff, M. G., Liebeskind, J. C., and Viveros, O. H. (1982b). Evidence for adrenal medullary opioid involvement in stress analgesia. Society for Neuroscience Abstracts, 8, 778.

    Google Scholar 

  • Lewis, J. W., Tordoff, M. G., Sherman, J. E., and Liebeskind, J. C. (1982c). Adrenal medullary enkephalin-like peptides may mediate opioid stress analgesia. Science, 217, 557–559.

    Article  PubMed  Google Scholar 

  • Liebeskind, J. C., Giesler, G. J., JR., and Urca, G. (1976). Evidence pertaining to an endogenous mechanism of pain inhibition in the central nervous system. In Y. ZoTTERMAN (Ed.), Sensory functions of the skin in primates. Oxford: Pergamon Press, pp. 561–573.

    Google Scholar 

  • Livingston, R. B. (1959). Central control of receptors and sensory transmission systems. In J. FIELD (Ed.), Handbook of physiology, Section 1: Neurophysiology, Vol. 1. Washington, DC: American Physiological Society, pp. 741–760.

    Google Scholar 

  • Maclennan, A. J., Drugan, R. C., Hyson, R. L., Maier, S. F., Madden, J., and Barchas, J. D. (1982). Corticosterone: A critical factor in an opioid form of stress-induced analgesia. Science, 215, 1530–1532.

    Article  PubMed  Google Scholar 

  • Madden, J., Akil, H., Patrick, R. L., and Barchas, J. D. (1977). Stress-induced parallel changes in central opioid levels and pain responsiveness in the rat. Nature, 265, 358360.

    Google Scholar 

  • Maier, S. F., Davies, S., Grau, J. W., Jackson, R. L., Morrison, D. H., Moye, T., Madden, J., and BARCHAS, J. D. (1980). Opiate antagonists and the long-term analgesic reaction induced by inescapable shock in rats. Journal of Comparative and Physiological Psychology, 94, 1172–1183.

    Article  PubMed  Google Scholar 

  • Maier, S. F., Sherman, J. E., Lewis, J. W., Terman, G. W., and Liebeskind, J. C. (1983). The opioid/nonopioid nature of stress-induced analgesia and learned helplessness. Journal of Experimental Psychology: Animal Behavior Processes, 9, 80–90.

    Article  PubMed  Google Scholar 

  • Maixner, W., and Randich, A. (1984). Role of the right vagal nerve trunk in antinociception. Brain Research, 298, 374–377.

    Article  PubMed  Google Scholar 

  • Mayer, D. J., and Hayes, R. L. (1975). Stimulation-produced analgesia: Development of tolerance and cross-tolerance to morphine. Science, 188, 941–943.

    Article  PubMed  Google Scholar 

  • Mayer, D. J., Wolfle, T. L., Akil, H., Carder, B., and Liebeskind, J. C. (1971). Analgesia from electrical stimulation in the brainstem of the rat. Science, 174, 1351–1354.

    Article  PubMed  Google Scholar 

  • Mcgivern, R. F., Berka, C., Berntson, G. G., Walker, J. M., and Sandman, C. A. (1979). Effect of naloxone on analgesia induced by food deprivation. Life Sciences, 25, 885888.

    Google Scholar 

  • Miczek, K. A., Thompson, M. L., and Shuster, L. (1982). Opioid-like analgesia in defeated mice. Science, 215, 1520–1522.

    Article  PubMed  Google Scholar 

  • Millan, M. J., Przewlocki, R., and Herz, A. (1980). A non-ß-endorphinergic adenohypophyseal mechanism is essential for an analgetic response to stress. Pain, 8, 343–353.

    PubMed  Google Scholar 

  • Millan, M. J. Tsang, Y. F., Przewlocki, R., Hour, V., and Herz, A. (1981). The influence of foot-shock stress upon brain, pituitary, and spinal cord pools of immunoreactive dynorphin in rats. Neuroscience Letters, 24, 75–79.

    Google Scholar 

  • Nelson, L. R., Lewis, J. W., Liebeskind, J. C., Branch, B. J., and Taylor, A. N. (1982). Fetal exposure to ethanol potentiates opioid stress analgesia in adult rats. Society for Neuroscience Abstracts, 8, 596.

    Google Scholar 

  • Nelson, L. R., Lewis, J. W., Liebeskind, J. C., Branch, B. J., and Taylor, A. N. (1983a). Stress-induced changes in ethanol consumption in adult rats exposed to ethanol in utero. Proceedings of the Western Pharmacology Society, 26, 205–209.

    Google Scholar 

  • Nelson, L. R., Lewis, J.W., Liebeskind, J. C., Kokka, N., Randolph, D., Branch, B. J., and Taylor, A. N. (1983b). Enhanced responsiveness to morphine in adult rats following fetal ethanol exposure. Society for Neuroscience Abstracts, 9, 1242.

    Google Scholar 

  • Nelson, L. R., Taylor, A. N., Branch, B. J., Liebeskind, J. C., and Lewis, J. W. (1984). Fetal exposure to ethanol affects sensitivity to morphine but not brain opiate receptor binding in rats. Society for Neuroscience Abstracts, 10, 964.

    Google Scholar 

  • Oleson, T. D., Twombly, D. A., and Liebeskind, J. C. (1978). Effects of pain-attenuating brain stimulation and morphine on electrical activity in the raphe nuclei of the awake rat. Pain, 4, 211–230.

    Article  PubMed  Google Scholar 

  • Oliveras, J. L., Besson, J. M., and Liebeskind, J. C. (1974). Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Experimental Brain Research, 20, 32–44.

    Article  Google Scholar 

  • Pedigo, N. W., and Dewey, W. L. (1981). Acetylcholine induced antinociception; comparisons to opiate analgesia. In G. PEPEU and H. LADINSKY (Eds.), Cholinergic mechanisms: Phylogenetic aspects, central and peripheral synapses, and clinical significance. Advances in Behavioral Biology, Vol. 25. New York: Plenum Press, pp. 795–807.

    Google Scholar 

  • Penner, E. R., Terman, G. W., and Liebeskind, J. C. (1982). Cross-tolerance between opioid mediated stimulation-produced and stress-induced analgesia. Society for Neuroscience Abstracts, 8, 619.

    Google Scholar 

  • Pert, A., and Walter, M. (1976). Comparison between naloxone reversal of morphine and electrical stimulation induced analgesia in the rat mesencephalon. Life Sciences, 19, 1023–1032.

    Article  PubMed  Google Scholar 

  • Peters, L. J., and Mason, K. A. (1979). Influence of stress on experimental cancer. In B. A. STOLL (Ed.), Mind and cancer prognosis. New York: Wiley, pp. 103–124.

    Google Scholar 

  • Prieto, G. J., Cannon, J. T., and Liebeskind, J. C. (1983). N raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat. Brain Research, 261, 53–57.

    Article  PubMed  Google Scholar 

  • Reynolds, D. V. (1969). Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science, 164, 444–445.

    Article  PubMed  Google Scholar 

  • Richardson, D. D., and Akil, H. (1977). Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. Journal of Neurosurgery, 47, 184–194.

    Article  PubMed  Google Scholar 

  • Rossier, J., French, E. D., Rivier, C., Ling, N., Guillemin, R., and Bloom, F. E. (1977). Foot-shock induced stress increases 13-endorphin levels in blood but not brain. Nature, 270, 618–620.

    Article  PubMed  Google Scholar 

  • Rossler, J., Guillemin, R., and Bloom, F. E. (1978). Foot-shock induced stress decreases leu5enkephalin immunoreactivity in rat hypothalamus. European Journal of Pharmacology, 48, 465–466.

    Article  Google Scholar 

  • Satoh, M., Akaike, A., Nakazawa, T., and Takagi, H. (1980). Evidence for involvement of separate mechanisms in the production of analgesia by electrical stimulation of the nucleus reticularis paragigantocellularis and nucleus raphe magnus in the rat. Brain Research, 194, 525–529.

    Article  PubMed  Google Scholar 

  • Schwartz, J. C., Barbin, G., Duchemin, A. M., Garbarg, M., Pollard, H., and Quach, T. T. (1981). Functional role of histamine in the brain. In G. C. PALMER (Ed.), Neuropharmacology of central nervous system and behavioral disorders. New York: Academic Press, pp. 539–570.

    Google Scholar 

  • Selye, H. (1956). The stress of life. New York: McGraw-Hill.

    Google Scholar 

  • Shavit, Y., Lewis, J. W., Terman, G. W., Gale, R. P., and Liebeskind, J. C. (1983a). Endogenous opioids may mediate the effects of stress on tumor growth and immune function. Proceedings of the Western Pharmacology Society, 26, 53–56.

    PubMed  Google Scholar 

  • Shavit, Y., Lewis, J. W., Terman, G. W., Gale, R. P., and Liebeskind, J. C. (1984a). Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science, 223, 188–190.

    Article  PubMed  Google Scholar 

  • Shavit, Y., Ryan, S. M., Lewis, J. C., Laudenslager, M. L., Terman, G. W., Maier, S. F., Gale, R. P., and Liebeskind, J. C. (1983b). Inescapable but not escapable stress alters immune function. Physiologist,26, A-64.

    Google Scholar 

  • Shavit, Y., Terman, G. W., Martin, F. C., Gale, R. P., and Liebeskind, J. C. (1984b). Naltrexone-sensitive suppression of the immune system’s natural killer cells by morphine. Society for Neuroscience Abstracts, 10, 726.

    Google Scholar 

  • Sklar, L. S., and Anisman, H. (1979). Stress and coping factors influence tumor growth. Science, 205, 513–515.

    Article  PubMed  Google Scholar 

  • Taylor, A. N., Branch, B. J., Liu, S. H., and Kokka, N. (1982). Long-term effects of fetal ethanol exposure on pituitary-adrenal response to stress. Pharmacology, Biochemistry, and Behavior, 16, 585–589.

    Google Scholar 

  • Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1981). Monoaminergic mechanisms of stress analgesia. Society for Neuroscience Abstracts, 7, 879.

    Google Scholar 

  • Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1982a). Role of the biogenic amines in stress analgesia. Proceedings of the Western Pharmacology Society, 25, 7–10.

    PubMed  Google Scholar 

  • Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1982b). Evidence for the involvement of histamine in stress analgesia. Society for Neuroscience Abstracts, 8, 619.

    Google Scholar 

  • Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1983a). Opioid and nonopioid mechanisms of stress analgesia: Lack of cross-tolerance between stressors. Brain Research, 206, 147–150.

    Article  Google Scholar 

  • Terman, G. W., Lewis, J. W., and Liebeskind, J. C. (1983b). The sensitivity of opioid-mediated stress analgesia to narcotic antagonists. Proceedings of the Western Pharmacology Society, 26, 49–52.

    Google Scholar 

  • Terman, G. W., Shavit, Y., Lewis, J. W., Cannon, J. T., and Liebeskind, J. C. (1984). Intrinsic mechanisms of pain inhibition and their activation by stress. Science, 226, 1270–1277.

    Article  PubMed  Google Scholar 

  • Torda, C. (1978). Effects of recurrent postnatal pain-related stressful events on opiate receptor-endogenous ligand system. Psychoneuroendocrinology, 3, 85–91.

    Article  PubMed  Google Scholar 

  • Tricklebank, M. D., Hutson, P. H., and Curzon, G. (1982). Analgesia induced by brief footshock is inhibited by 5-hydroxytryptamine but unaffected by antagonists of 5hydroxytryptamine or by naloxone. Neuropharmacology, 21, 51–56.

    Article  PubMed  Google Scholar 

  • Urca, G., and Liebeskind, J. C. (1979). Electrophysiological indices of opiate action in awake and anesthetized rats. Brain Research, 161, 162–166.

    Article  PubMed  Google Scholar 

  • Visintainer, M. A., Volpicelli, J. R., and Seligman, E. P. (1982). Tumor rejection in rats after inescapable or escapable shock. Science, 216, 437–439.

    Article  PubMed  Google Scholar 

  • Viveros, O. H., Diliberto, E. J., JR., Hazum, E., and Chang, K.-J. (1980). Enkephalins as possible adrenomedullary hormones: Storage, secretion, and regulation of synthesis. In E. COSTA and M. TRABUCCHI (Eds.), Neural peptides and neuronal communication. New York: Raven Press, pp. 191–201.

    Google Scholar 

  • Viveros, O. H., and Wilson, S. P. (1983). The adrenal chromaffin cell as a model to study the co-secretion of enkephalins and catecholamines. Journal of the Autonomous Nervous System, 7, 41–58.

    Article  Google Scholar 

  • Watkins, L. R., Cobelli, D. A., and Mayer, D. J. (1982b). Opiate vs. non-opiate footshock analgesia (FSIA): Descending and intraspinal components. Brain Research, 245, 97106.

    Google Scholar 

  • Watkins, L. R., Cobelli, D. A., Newsome, H. H., andMayer, D. J. (1982c). Footshock induced analgesia is dependent neither on pituitary nor sympathetic activation. Brain Research, 245, 81–96.

    Article  PubMed  Google Scholar 

  • Watkins, L. R., and Mayer, D. J. (1982). The organization of endogenous opiate and non-opiate pain control systems. Science, 216, 1185–1192.

    Article  PubMed  Google Scholar 

  • Watson, S. J., Akil, H., and Barchas, J. D. (1979). Immunohistochemical and biochemical studies of the enkephalins, 3-endorphin and related peptides. In E. USDIN, W. E. BUNNEY, and N. S. KLINE (Eds.), Endorphins in mental health research. New York: Oxford University Press, pp. 30–44.

    Google Scholar 

  • Yaksh, T. L, and Rudy, T. A. (1978). Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain, 4, 299–359.

    Article  PubMed  Google Scholar 

  • Yaksh, T. L., Yeung, J. C., and Rudy, T. A. (1976). An inability to antagonize with naloxone the elevated thresholds resulting from electrical stimulation of the mesencephalic central gray. Life Sciences, 18, 1193–1198.

    Article  PubMed  Google Scholar 

  • Young, R. F., Feldman, R. A., Kroening, R., Fulton, W., and Morris, J. (1984). Electrical stimulation of the brain in the treatment of chronic pain in man. In L. KRUGER and J. C. LIEBESKIND (Eds.), Neural mechanisms of pain. Advances in Pain Research and Therapy, Vol. 6. New York: Raven Press, pp. 289–303.

    Google Scholar 

  • Zorman, G., Hentall, I. D., Adams, J. E., and Fields, H. L. (1981). Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Research, 219, 137148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, J.W., Nelson, L.R., Terman, G.W., Shavit, Y., Liebeskind, J.C. (1986). Intrinsic Control Mechanisms of Pain Perception. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds) Consciousness and Self-Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0629-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0629-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0631-4

  • Online ISBN: 978-1-4757-0629-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics