Skip to main content

Epigenetic Factors in Neuronal Differentiation

A Review of Recent Research

  • Chapter
The Development of Attachment and Affiliative Systems

Part of the book series: Topics in Developmental Psychobiology ((TDP))

  • 204 Accesses

Abstract

In recent years evidence has been accumulating on the concept that neuronal differentiation and growth are under the influence of both genetic and epigenetic factors. A great portion of the information available has derived from studies using the autonomic nervous system and from in vitro neural model systems. In this chapter I will review some of the observations which have contributed to the view of a pluropotential neuron. Two basic observations have prompted the reevaluation of basic developmental phenomena. One example is that portions of neural crest that normally provide sympathetic neurons may, under certain experimental conditions, provide parasympathetic neurons instead. The other observation is that neurons from a predominantly adrenergic sympathetic ganglion grown under certain tissue culture conditions form cholinergic synapses among themselves and on several types of target tissue in coculture. Finally, studies both in vivo and in vitro have shown that neuronal growth and differentiation are regulated by various epigenetic intrinsic factors such as hormones and neurohumors or substances secreted by the glial cells, the “glial factors.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Balazs, R. Effect of thyroid hormone and undernutrition on cell acquisition in the rat brain. In D. Gilman-Grave (Ed.), Thyroid hormone and brain development. New York: Raven Press, 1977.

    Google Scholar 

  • Bohn, M. C., & Lauder, J. M. The effects of neonatal hydrocortisone on rat cerebellar development: An autoradiographic and light-microscopic study. Developmental Neuroscience, 1978, 1, 250–266.

    Article  Google Scholar 

  • Bohn, M. C., & Lauder, J. M. Cerebellar granule cell genesis in the hydrocortisone-treated rat. Developmental Neuroscience, 1980, 3, 81–89.

    Article  PubMed  Google Scholar 

  • Bunge, R., Johnson, M., & Ross, C. D. Nature and nurture in the development of the autonomic neuron. Science, 1978, 199, 1409–1416.

    Article  PubMed  Google Scholar 

  • Burden, H. W., & Lawrence, I. E. Presence of biogenic amines in early rat development. American Journal of Anatomy, 1973, 136, 251–257.

    Article  PubMed  Google Scholar 

  • Buznikov, G. A., Chudakova, I. V., & Znezdia, N. D. The role of neurohumors in early embryo-genesis: I. Serotonin content of developing embryos of sea urchin and loach. Journal of Embryology and Experimental Morphology, 1964, 12, 563–573.

    PubMed  Google Scholar 

  • Buznikov, G. A., Chudakova, I. V., Berdysheva, L. V., & Vyazmina, N. M. The role of neurohumors in early embryogenesis: I. Acetylcholine and catecholamine content in developing embryos of sea urchin. Journal of Embryology and Experimental Morphology, 1968, 20, 119–128.

    PubMed  Google Scholar 

  • Hajos, F., Patel, A. J., & Balazs, R. Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Research, 1973, 50, 387–1101.

    Article  PubMed  Google Scholar 

  • Howard, E. Hormonal effects on the growth and DNA content of the developing brain. In W. A. Himwich (Ed.), Biochemistry of the developing brain (Vol. 3 ). New York: Dekker, 1974.

    Google Scholar 

  • Lauder, J. M., & Bloom, F. E. Ontogeny of monoamine neurons in the locus coeruleus, raphei nuclei and substantia nigra of the rat: I. Cell differentiation. Journal of Comparative Neurology, 1974, 155, 459–482.

    Article  Google Scholar 

  • Lauder, J. M., & Krebs, H. Serotonin as a differentiation signal in early neurogenesis. Developmental Neuroscience, 1978, 1, 15–30.

    Article  PubMed  Google Scholar 

  • LeDouarin, N. M., & Teillet, M. A. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and neuroectodermal mesenchymal derivatives, using a biological cell marking technique. Developmental Biology, 1974, 41, 162–184.

    Article  Google Scholar 

  • LeDouarin, N. M., Renaud, D., Teillet, M. A., & LeDouarin, G. H. Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations. Proceedings of the National Academy of Sciences, 1975, 72, 728–732.

    Article  Google Scholar 

  • Keefe, J. R. An analysis of urodelian retinal regeneration: I. Studies of the cellular source of retinal regeneration in Notophthalmus vividescens H-thymidine and colchicine. Journal of Experimental Zoology, 1973, 184, 185–206.

    Article  PubMed  Google Scholar 

  • Keefe, J. R. An analysis of urodelian retinal regeneration: II. Ultrastructural features of retinal regeneration in Notophthalmus vividescens. Journal of Experimental Zoology, 1973, 184, 207–232.

    Google Scholar 

  • Olson, L., Seiger, A., Alund, M., Freedman, R., Hoffer, B., Taylor, D., & Woodward, D. Intraocular brain crafts: A method for differentiating between intrinsic and extrinsic determinants of structural and functional development in the central nervous system. In E. Meisami & M. A. B. Brazier (Eds.), Neural growth and differentiation (Vol. 5 ). International Research Organization Monograph Series. New York: Raven Press, 1979.

    Google Scholar 

  • Parker, K. K., Norenberg, M., & Vernadakis, A. “Transdifferentiation” of C-6 glial cells in culture. Science, 1980, 208, 179–181.

    Article  PubMed  Google Scholar 

  • Patterson, P. H., & Chun, L. Y. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons: I. Effects of conditioned medium. Developmental Biology, 1977, 56, 263–280.

    Article  PubMed  Google Scholar 

  • Patterson, P. H., & Chun, L. Y. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons: II. Developmental aspects. Developmental Biology, 1977, 56, 473–481.

    Article  Google Scholar 

  • Skoff, R. P., Price, D. L., & Stocks, A. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve: I. Cell proliferation. Journal of Comparative Neurology, 1976, 169, 291–311.

    Google Scholar 

  • Skoff, R. P., Price, D. L., & Stocks, A. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve: II. Time of origin. Journal of Comparative Neurology, 1976, 169, 313–334.

    Article  PubMed  Google Scholar 

  • Timiras, P. S. Developmental physiology and aging. New York: MacMillan, 1972.

    Google Scholar 

  • Valcana, T., & Eberhardt, N. L. Effects of neonatal hypothyroidism on protein synthesis in the developing rat brain: An open question. In D. Gillman-Grave (Ed.), Thyroid hormones and brain development. New York: Raven Press, 1977.

    Google Scholar 

  • Vernadakis, A. Hormonal factors in the proliferation of glial cells in culture. In D. H. Ford (Ed.), Influence of hormones on the nervous system. Proceedings of the International Society of Psychoneuroendocrinology. Basel: S. Karger, 1971.

    Google Scholar 

  • Vernadakis, A. Neurotransmission: A proposed mechanism of steroid hormones in the regulation of brain function. In N. Hatotani (Ed.), Proceedings of the Mie Conference of the International Society of Psychoneuroendocrinology. Basel: S. Karger, 1974.

    Google Scholar 

  • Vernadakis, A., & Gibson, D. A. Role of neurotransmitter substances in neural growth. In J. Dancis & J. C. Hwang (Eds.), Perinatal pharmacology: Problems and priorities. New York: Raven Press, 1974.

    Google Scholar 

  • Vernadakis, A., & Woodbury, S. M. Effect of cortisol on the electroshock seizure thresholds in developing rats. Journal of Pharmacology and Experimental Therapeutics, 1963, 139, 110–113.

    PubMed  Google Scholar 

  • Vernadakis, A., Culver, B., & Nidess, R. Actions of steroid hormones on neural growth in culture: Role of glial cells. Psychoneuroendocrinology, 1978, 3, 47–64.

    Article  PubMed  Google Scholar 

  • Vernadakis, A., Nidess, R., & Arnold, E. B. Role of glial cells in neural growth. In E. Meisami & M. A. B. Brazier (Eds.), Neural growth and differentiation (Vol. 5 ). International Research Organization Monograph Series. New York: Raven Press, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Vernadakis, A. (1982). Epigenetic Factors in Neuronal Differentiation. In: Emde, R.N., Harmon, R.J. (eds) The Development of Attachment and Affiliative Systems. Topics in Developmental Psychobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4076-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4076-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4078-2

  • Online ISBN: 978-1-4684-4076-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics