Skip to main content

The Timing of Hormone Signals in the Orchestration of Brain Development

  • Chapter
The Development of Attachment and Affiliative Systems

Part of the book series: Topics in Developmental Psychobiology ((TDP))

Abstract

During development, the entire organism as well as specific organs and systems, including the central nervous system (CNS), undergo so-called critical periods characterized by accelerated growth and differentiation and by great susceptibility to environmental stimuli. Among such stimuli, hormones have been shown to play roles, both organizational (i.e., to direct cell differentiation) and regulatory (i.e., to influence the rate of growth and metabolism in mammals). The most important developmental effects of major hormones are presented in Table I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrews, W. W., & Ojeda, S. R.: On the feedback actions of estrogens on gonadotropin and prolactin release in infantile female rats. Endocrinology, 1977, 101, 1517–1523.

    Article  PubMed  Google Scholar 

  • Child, C. M.: Patterns and problems of development. Chicago: University of Chicago Press, 1941.

    Book  Google Scholar 

  • Dalal, K. B., Valcana, T., Timiras, P. S., & Einstein, E. R.: Regulatory role of thyroxine on myelinogenesis in the developing rat. Neurobiology, 1971, 1, 211–224.

    Google Scholar 

  • Davenport, J. W.: Environmental therapy in hypothyroid and other disadvantaged animal populations. In R. N. Walsh & W. T. Greenough (Eds.), Environments as therapy for brain dysfunction. New York: Plenum Press, 1976.

    Google Scholar 

  • Dobbing, J.: Prenatal nutrition and neurological development. In N. A. Buchwald & M. A. B. Brazier (Eds.), Brain mechanisms in mental retardation. New York: Academic Press, 1975.

    Google Scholar 

  • Darner, G., & Staudt, J.: Structural changes in the hypothalamic ventromedial nucleus of the male rat, following neonatal castration and androgen treatment. Neuroendocrinology, 1969, 4, 278–281.

    Article  Google Scholar 

  • Drayes, D. J., & Timiras, P. S.: Thyroid hormone effects in neural (tumor) cell culture: Differential effects on triiodothyronine nuclear receptors, Na, K. ATPase activity and intracellular electrolyte levels. In E. Giacobini, A. Vernadakis, & A. Shahar (Eds.), Tissue culture in neurobiology. New York: Raven Press, 1980.

    Google Scholar 

  • Dussault, J. H., & Labrie, F.: Development of the hypothalamic-pituitary-thyroid axis in the neonatal rat. Endocrinology, 1975, 97, 1321–1324.

    Article  PubMed  Google Scholar 

  • Eberhardt, N. L., Valcana, T., & Timiras, P. S.: Hormone-receptor interactions in brain: Uptake and binding of thyroid hormone. Psychoneuroendocrinology, 1976, 1, 399–409.

    Article  Google Scholar 

  • Eberhardt, N. L., Valcana, T., & Timiras, P. S.: Triiodothyronine nudear receptors: An in vitro comparison of the binding of triiodothyronine nuclei of adult rat liver, cerebral hemisphere and anterior pituitary. Endocrinology, 1978, 102, 556–561.

    Article  PubMed  Google Scholar 

  • Everitt, A. V.: The neuroendocrine system and aging. Gerontology, 1980, 26, 108–119.

    Article  PubMed  Google Scholar 

  • Geel, S. E.: Development-related changes of triiodothyronine binding to brain cystosol receptors. Nature, 1977, 269, 428–430.

    Google Scholar 

  • Geel, S. E., Gonzales, L., & Timiras, P. S.: Properties of triiodothyronine binding sites in cerebral cortical cytosol. Endocrine Research Communications, 1981, 8, 1–18.

    Article  PubMed  Google Scholar 

  • Geel, S. E., & Timiras, P. S.: The influence of neonatal hypothyroidism and of thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex. Brain Research, 1967a, 4, 135–142.

    Google Scholar 

  • Geel, S. E., & Timiras, P. S.: Influence of neonatal hypothyroidism and of thyroxine on acetylcholinesterase and cholinesterase activities in the developing central nervous system of the rat. Endocrinology, 1967b, 80, 1069–1074.

    Article  Google Scholar 

  • Geel, S. E., & Timiras, P. S.: The role of hormones in cerebral protein metabolism. In A. Lajtha (Ed.), Protein metabolism of the nervous system. New York: Plenum Press, 1970.

    Google Scholar 

  • Geel, S. E., Valcana, T. & Timiras, P. S.: Effect of neonatal hypothyroidism and of thyroxine on L(14C-)lysine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat. Brain Research, 1967, 4, 143–150.

    Article  PubMed  Google Scholar 

  • Gorski, R. A., & Barraclough, A.: Effects of low dosages of androgen on the differentiation of hypothalamic regulatory control of ovulation in the rat. Endocrinology, 1963, 73, 210–216.

    Article  PubMed  Google Scholar 

  • Goy, R. W.: Organizing effects of androgen on the behavior of rhesus monkeys. In R. P. Michael (Ed.), Endocrinology and human behavior. England: Oxford Press, 1968.

    Google Scholar 

  • Goy, R. W.: Early hormonal influence on the development of sexual and sex-related behavior. In G. C. Quarton, T. Melanchuk, & F. O. Schmitt (Eds.), Neuro-sciences: A study program. New York: Rockefeller University Press, 1970.

    Google Scholar 

  • Grave, G. D. (Ed.), Thyroid hormones and brain development. New York: Raven Press, 1977.

    Google Scholar 

  • Hamburger, V.: Emergence of nervous coordination. In M. Locke (Ed.), The emergence of order in developing systems. Developmental biology supplement (Vol. 2 ). New York: Academic Press, 1968.

    Google Scholar 

  • Harlan, R. E., Gordon, J. H., & Gorski, R. A.: Sexual differentiation of the brain: Implications for neuroscience. In D. M. Schneider (Ed.), Reviews of neuroscience (Vol. 4 ). New York: Raven Press, 1979.

    Google Scholar 

  • Harris, G. W.: Electrical stimulation of the hypothalamus and the mechanism of neural control of the adenohyophysis. Journal of Physiology (London), 1948, 107, 418–429.

    Google Scholar 

  • Harris, G. W.: Sex hormones, brain development and brain function. Endocrinology, 1964, 75, 627–648.

    Article  PubMed  Google Scholar 

  • Jost, A.: Problems of fetal endocrinology: The gonadal and hypophyseal hormones. Recent Progress in Hormone Research, 1953, 8, 379–418.

    Google Scholar 

  • Kawakami, M., & Sawyer, C. H.: Neuroendocrine correlates of changes in brain activity thresholds by sex steroids and pituitary hormones. Endocrinology, 1959, 65, 652–668.

    Article  PubMed  Google Scholar 

  • Legrand, J.: Comparative effects of thyroid deficiency and undernutrition on maturation of the nervous system and particularly on myelination in the young rat. In M. Hamburgh & E. J. W. Barrington (Eds.), Hormones in development. New York: Appleton-Century-Croft, 1971.

    Google Scholar 

  • Levine, S. (Ed.), Hormones and behavior. New York: Academic Press, 1972.

    Google Scholar 

  • Lorenz, K.: Der Kumpan in der Umwelt des Vogels. Journal für Ornithologie, 1935, 83, 137–213.

    Article  Google Scholar 

  • Martin, L.: Role of the metabolism of steriod hormones on the brain in sex differentiation and sexual maturation. In G. Dörner & M. Kawakami (Eds.), Hormones and brain development. Amsterdam: Elsevier/North-Holland Biomedical Press, 1978.

    Google Scholar 

  • McEwen, B. S.: Steroid hormone interactions with the brain: Cellular and molecular aspects. In D. M. Schneider (Ed.), Reviews of neuroscience (Vol. 4 ). New York: Raven Press, 1979.

    Google Scholar 

  • Naftolin, F.: Metabolism of steroids in the brain. In V. H. T. James (Ed.), Endocrinology. Amsterdam-Oxford: Excerpta Medica, 1977.

    Google Scholar 

  • Naidoo, S., Valcana, T., & Timiras, P. S.: Thyroid hormone receptors in the developing rat brain. American Zoologist, 1978, 18, 522–545.

    Google Scholar 

  • Pearson, D. E., Teicher, M. H., Shaywitz, B. A., Cohen, D. J., Young, J. G., & Anderson, G. M.: Environmental influences on body weight and behavior in developing rats after neonatal 6hydroxydopamine. Science, 1980, 209, 715–717.

    Article  PubMed  Google Scholar 

  • Pfeiffer, C. A.: Sexual differences of the hypophysis and their determination by the gonads. American Journal of Anatomy, 1936, 58, 195–226.

    Article  Google Scholar 

  • Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C.: Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 1959, 65, 369–382.

    Article  PubMed  Google Scholar 

  • Phoenix, C. H., Goy, R. W., & Resko, J. A.: Psychosexual differentiation as a function of androgenic stimulation. In M. Diamond (Ed.), Perspectives in reproduction and sexual behavior. Bloomington, Ind.: Indiana University Press, 1968.

    Google Scholar 

  • Reinisch, J. M.: Fetal hormones, the brain and human sex differences: A heuristic, integrative review of the recent literature. Archives of Sexual Behavior, 1974, 3, 51–90.

    Article  PubMed  Google Scholar 

  • Sawyer, C. H., & Gorski, R. A. (Eds.), Steroid hormones and brain function. Berkeley: University of California Press, 1971.

    Google Scholar 

  • Scott, J. P.: Early experience and organization of behavior. Belmont, Calif.: Brooks/Cole, 1968.

    Google Scholar 

  • Shapiro, B. H., Levine, D. C., & Adler, N. T.: The testicular feminized rat: A naturally occurring model of androgen independent brain masculinization. Science, 1980, 209, 418–420.

    Article  PubMed  Google Scholar 

  • Skochko, S., & Timiras, P. S.: Effects of anesthetics on mitochondrial membrane fluidity in normal and hypothyroid myocardium. Federation Proceedings, 1980, 39, 719.

    Google Scholar 

  • Spemann, H.: Embryonic development and induction. New Haven: Yale University Press, 1938.

    Google Scholar 

  • Sterling, K., Lazarus, J. H., Milch, P. O., Sakurada, T., & Brenner, M. A.: Mitochondrial thyroid hormone receptor: Localization and physiological significance. Science, 1978, 201, 1126.

    Article  PubMed  Google Scholar 

  • Stockard, C. R.: Developmental rate and structural expression: An experimental study of twins, “double” monsters and single deformities, and the interaction among embryonic organs during their origin and development. American Journal of Anatomy, 1921, 28, 115–277.

    Article  Google Scholar 

  • Terasawa, E., & Timiras, P. S.: Electrical activity during the estrous cycle of the rat: Cyclic changes in limbic structures. Endocrinology, 1968a, 83, 207–216.

    Article  PubMed  Google Scholar 

  • Terasawa, E., & Timiras, P. S.: Electrophysiological study of the limbic system in the rat at onset of puberty. American Journal of Physiology, 1968b, 215, 1462 - 1467.

    Google Scholar 

  • Terasawa, E., & Timiras, P. S.: Cyclic changes in electrical activity of the rat midbrain reticular formation during the estrous cycle. Brain Research, 1969, 14, 189–198.

    Article  PubMed  Google Scholar 

  • Timiras, P. S.: Estrogens as organizers of CNS function. In D. H. Ford (Ed.), Influence of hormones on the nervous system. Basel: S. Karger, 1971.

    Google Scholar 

  • Timiras, P. S.: Developmental physiology and aging. New York: Macmillan, 1972.

    Google Scholar 

  • Timiras, P. S.: Biological perspectives on aging: In search of a masterplan. American Scientist, 1978, 66, 605–613.

    PubMed  Google Scholar 

  • Tse, J., Wrenn, R. W., & Kuo, J. F.: Thyroxine-induced changes in characteristics of ß-adrenergic receptors and adenosine 3’, 5’- monophosphate and guanosine 3’, 5’- monophosphate systems in the heart may be related to reputed catecholamine supersensitivity in hyperthyroidism. Endocrinology, 1980, 107, 6–16.

    Article  PubMed  Google Scholar 

  • Vaccari, A., Brotman, S., Cimino, J., & Timiras, P. S.: Sex differences of neurotransmitter enzymes in central and peripheral nervous systems. Brain Research, 1977, 132, 176–185.

    Article  PubMed  Google Scholar 

  • Vaccari, A., & Timiras, P. S.: Alterations in brain dopaminergic receptors in developing hypo-and hyperthyroid rats. Neurochemistry International, 1981, 3, 149–153.

    Article  PubMed  Google Scholar 

  • Vaccari, A., Valcana, T., & Timiras, P. S.: Effects of hypothyroidism on the enzymes for biogenic amines in the developing rat brain. Pharmacological Research Communications, 1977, 9, 763–780.

    Article  PubMed  Google Scholar 

  • Valcana, T.: The role of triiodothyronine (T3) receptors in brain development. In E. Meisami & M. A. B. Brazier (Eds.), Neural growth and differentiation. New York: Raven Press, 1979.

    Google Scholar 

  • Valcana, T., Einstein, E. R., Csdjtey, J., Dalal, K. B., & Timiras, P. S.: Influence of thyroid hormones on myelin proteins in the developing rat brain. Journal of the Neurological Sciences, 1975, 25, 19 27.

    Google Scholar 

  • Valcana, T., & Timiras, P. S.: Effect of hypothyroidism on ionic metabolism and Na’K’ activated ATP phosphohydrolase activity in the developing rat brain. Journal of Neurochemistry, 1969, 16, 935–943.

    Article  PubMed  Google Scholar 

  • Valcana, T., & Timiras, P. S.: Nuclear triiodothyronine receptors in the developing rat brain. Molecular and Cellular Endocrinology, 1978, 2, 31–41.

    Article  Google Scholar 

  • Valcana, T., & Timiras, P. S.: Changes in rat liver nuclear triiodothyronine receptors with age and thyroid activity. In L. Macho, & V. Strbak (Eds.), Hormones and development. Bratislava: VEDA, 1979.

    Google Scholar 

  • Walker, R. F., & Timiras, P. S.: Serotonin in development of cyclic reproductive function. In B. Haber, S. Gabay, M. R. Issidorides, & S. G. A. Alivisatos (Eds.), Serotonin: Current aspects of neurochemistry and function. Advances in experimental biology and medicine (Vol. 133 ). New York: Plenum Press, 1981.

    Google Scholar 

  • Walker, R. F., & Timiras, P. S.: Pacemaker insufficiency and the onset of aging. In D. Carpenter (Ed.), Cellular pacemakers II. New York: Wiley. 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Timiras, P.S. (1982). The Timing of Hormone Signals in the Orchestration of Brain Development. In: Emde, R.N., Harmon, R.J. (eds) The Development of Attachment and Affiliative Systems. Topics in Developmental Psychobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4076-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4076-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4078-2

  • Online ISBN: 978-1-4684-4076-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics