Skip to main content

Localization of Putative Amino Acid Transmitters in the PAG and their Relationship to the PAG-Raphe Magnus Pathway

  • Chapter
The Midbrain Periaqueductal Gray Matter

Part of the book series: NATO ASI Series ((NSSA,volume 213))

Abstract

The vast majority of synapses in the central nervous system (CNS) appear to use excitatory amino acids as their neurotransmitters (Cotman et al., 1987; Monaghan et al., 1989; Watkins et al., 1990). Although Curtis et al. (1959; 1960) first provided conclusive evidence over 3 decades ago that glutamate and aspartate exert a powerful excitatory action on neurons, it was only during the past 15 years that glutamate and aspartate have been seriously considered as excitatory neurotransmitters in the CNS. Several other amino acids and dipeptides have been suggested as putative excitatory amino acid transmitter candidates in the CNS, however, the majority of evidence to date favors glutamate and aspartate as the most likely candidates for neurotransmitters in the brain. Thus glutamate and aspartate have largely been shown to fulfill the criteria for a neurotransmitter, e.g., Ca2+-dependent release upon stimulation, high affinity uptake into nerve terminals, presence of the amino acids and synthetic enzymes in nerve terminals, blockade of synaptic transmission by excitatory amino acid antagonists, and identity of action (Cotman et al., 1987; Fonnum, 1984; Nicholls, 1989; Watkins and Evans, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aimone, L.D. and Gebhart, G.F., Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla, J. Neurosci., 6 (1986) 1803–1813.

    CAS  PubMed  Google Scholar 

  • Albin, R.L., Makowiec, R.L., Hollingsworth, Z., Dure, L.S., Penney, J.B. and Young, A.B., Excitatory amino acid receptors in the periaqueductal gray of the rat, Neurosci. Lett., 118 (1990) 112–115.

    Article  CAS  PubMed  Google Scholar 

  • Araneda, S., Ghilini, G., Mullett, M., Beitz, A.J. and Wiklund, L., Combination of D-[3H]aspartate retrograde labeling and immunocytochemical detection of L-GLU and L-ASP in neurons of the periaqueductal gray (PAG) projecting to the raphe magnus of the rat, J. Chem. Neuroanat., submitted.

    Google Scholar 

  • Bandler, R.J., Induction of ‘rage’ following microinjection of glutamate into midbrain but not hypothalamus of cats, Neurosci. Lett., 30 (1982) 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Bandler, R.J., Depaulis, A. and Vergnes, M., Identification of midbrain neurons mediating defensive behavior in the rat by microinjection of excitatory amino acids, Behav. Brain Res., 15 (1985) 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Basbaum, A.I. and Fields, H.L., Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry, Ann. Rev. Neurosci., 7 (1984) 309–338.

    Article  CAS  PubMed  Google Scholar 

  • Beart, P.M., Summers, R.J., Stephenson, J.A., Cook, C.J. and Christie, M.J., Excitatory amino acid projections to the periaqueductal gray in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA, Neuroscience, 34 (1990) 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Beart, P.M., Nicolopoulos, L.S., West, D.C. and Headley, P.M., An excitatory amino acid projection from the ventromedial hypothalamus to periaqueductal gray in the rat: autoradiographic and electrophysiological evidence, Neurosci. Lett., 85 (1988) 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Behbehani, M.M. and Fields, H.L., Evidence that an excitatory connection between periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia, Brain Res., 170 (1979) 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Behbehani, M.M. and Pomeroy, S.L., Effect of morphine injected in periaqueductal gray on the activity of single units in nucleus raphe magnus of the rat, Brain Res., 149 (1978) 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Beitz, A.J., Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat, Brain Res. Bull., 23 (1989) 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Beitz, A.J., Central Gray, In: The Human Nervous System, Paxinos G., (Ed.), Academic Press, San Diego, 1990a, pp. 307–320.

    Google Scholar 

  • Beitz, A.J., The relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis, J. Histochem. Cytochem, 38 (1990b) 1755–1765.

    Article  CAS  PubMed  Google Scholar 

  • Beitz, A J., The Anatomical and Chemical Organization of Descending Pain Modulation Systems, In: Animal Pain and Its Control, Short C.E., (Ed.), Churchill Livingstone, Inc., New York, 1991, in press.

    Google Scholar 

  • Beitz, A.J., Shepard, R.D. and Wells, W.L., The periaqueductal gray-raphe magnus projection contains somatostatin, neurotensin, and serotonin but not cholecystokinin, Brain Res., 261 (1983) 132–137.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste, H., Brain microdialysis, J. Neurochem., 52 (1989) 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  • Christie, M.J., James, L.B. and Beart, P.M., An excitatory amino acid projection from rat prefrontal cortex to periaqueductal gray, Brain Res. Bull., 16 (1986) 127–129.

    Article  CAS  PubMed  Google Scholar 

  • Clements, J.R., Madl, J.E., Johnson, R.L., Larson, A.A. and Beitz, A.A., Localization of glutamate, glutaminase, aspartate and aspartate aminotransferase in the rat midbrain periaqueductal gray, Exp. Brain Res., 67 (1987) 594–602.

    Article  CAS  PubMed  Google Scholar 

  • Collingridge, G.L. and Lester, R.A.J., Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev., 40 (1989) 143–210.

    Google Scholar 

  • Cotman, C.W., Monaghan, D.T., Ottersen, O.P. and Storm-Mathisen, J., Anatomical organization of excitatory amino acid receptors and their pathways, Trends Neurosci., 10 (1987) 273–280.

    Article  CAS  Google Scholar 

  • Cuénod, M. and Streit, P., Neuronal tracing using retrograde migration of labeled transmitter-related compounds, In: Methods in Chemical Neuroanatomy, Vol. 1, Björklund A. and Hökfelt T. (Eds.), Elsevier, Amsterdam, 1983, pp. 365–397.

    Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C., Chemical excitation of spinal neurones, Nature, 183 (1959) 611–612.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C., The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. (Lond), 150 (1960) 656–682.

    CAS  Google Scholar 

  • Fields, H.L. and Besson, J.M., Pain Modulation, Prog. Brain Res., Vol. 77, Elsevier, Amsterdam, 1988.

    Google Scholar 

  • Fonnum, F., Glutamate: a neurotransmitter in mammalian brain, J. Neurochem., 42 (1984) 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre, J.T., Young, A.B. and Penney, J.B., Quantitative autoradiographic distribution of L-[3H] glutamate-binding sites in rat central nervous system, J. Neurosci., 4 (1984) 2133–2144.

    CAS  PubMed  Google Scholar 

  • Halpain, S., Wieczorek, C.M. and Rainbow, T.C., Localization of 1-glutamate receptors in rat brain by quantitative autoradiography, J. Neurosci., 4 (1984) 2247–2258.

    CAS  PubMed  Google Scholar 

  • Hepler, J.R., Toomim, C.S., McCarthy, K.D., Conti, F., Battaglia, G., Rustioni, A. and Petrusz, P., Characterization of antisera to glutamate and aspartate, J. Histochem. Cytochem., 36 (1988) 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Huxtable, R.J., Taurine in the central nervous system and the mammalian actions of taurine, Prog. Brain Res., 32 (1989) 471–533.

    CAS  Google Scholar 

  • Jiang, M. and Behbehani, M.M., Interaction between the insular cortex (IC) and the periaqueductal gray (PAG), Soc. Neurosci. Abstr., 16 (1990) 563.

    Google Scholar 

  • Johnson, R.L. and Koerner, J.F., Excitatory amino acid neurotransmission, J. Med. Chem., 31 (1988) 2057–2066.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens, U. and Richter, K., Glutamate-induced vocalization in the squirrel monkey, Brain Res., 373 (1986) 349–358.

    Article  PubMed  Google Scholar 

  • Kalén, P., Karlson, M. and Wiklund, L., Possible excitatory amino acid afferents to nucleus raphe dorsalis of the rat investigated with retrograde wheat germ agglutinin and D-[3H]aspartate tracing, Brain Res., 360 (1985) 285–297.

    Article  PubMed  Google Scholar 

  • Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T.A., Sakmann, B. and Seeburg, P.H., A family of AMPA-selective glutamate receptors, Science, 249 (1990) 556–560.

    Article  PubMed  Google Scholar 

  • Luppi, P.-H., Kazuya, S., Fort, P., Salvert, D. and Jouvet, M., The nuclei of origin of monoaminergic, peptidergic and cholinergic afferents to the cat nucleus reticularis magnocellularis: a double labeling study with cholera toxin as a retrograde tracer, J. Comp. Neurol., 277 (1988) 1–20.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, A.J., Beitz, A.J., Larson, A.A., Kuriyama, R., Sellitto, C. and Madl, J.E., Colocalization of glutamate and tubulin in putative excitatory neurons of the hippocampus: An immunohistochemical study using monoclonal antibodies, Neuroscience, 30 (1989) 405–421.

    Article  CAS  PubMed  Google Scholar 

  • Meeker, R.B., Swanson, D.J. and Hayward, J.N., Light and electron microscopic localization of glutamate immunoreactivity in the supraoptic nucleus of the rat hypothalamus, Neuroscience, 16 (1989) 157–167.

    Article  Google Scholar 

  • Monaghan, D.T., Bridges, R.J. and Cotman, C.W., The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system, Annu. Rev. Pharmacol. Toxicol., 29 (1989) 365–402.

    Article  CAS  PubMed  Google Scholar 

  • Mohrland, J.S., McManus, D.Q. and Gebhart, G.F., Lesions in the nucleus reticularis gigantocellularis: Effects on the antinociception produced by microinjection of morphine and focal electrical stimulation in the periaqueductal gray matter, Brain Res., 231 (1982) 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Mullett, M.A., Araneda, S., Ghilini, G., Wiklund, L. and Beitz, A.J., Combination of D-[3H]Asp retrograde labelling and immunocytochemical detection of L-Glu and L-Asp in the PAG projection to raphe magnus, Soc. Neurosci. Abstr., 15 (1989) 941.

    Google Scholar 

  • Nicholls, D.G., Release of glutamate, aspartate and gamma-aminobutyric acid from isolated nerve terminals, J. Neurochem., 52 (1989) 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Ottersen, O.P. and Storm-Mathisen, J., Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique, J. Comp. Neurol., 229 (1984a) 374–392.

    Article  CAS  PubMed  Google Scholar 

  • Ottersen, O.P. and Storm-Mathisen, J., Neurons containing or accumulating transmitter amino acids, In: Handbook of Chemical Neuroanatomy, Vol. 3: Classical transmitters and transmitter receptors in the CNS, Part II, Björklund A., Hökfelt T. and Kuhar M.J. (Eds.), Elsevier, Amsterdam, 1984b, pp. 141–246.

    Google Scholar 

  • Patneau, D.K. and Mayer, M.L., Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and Quisqualate receptors, J. Neurosci., 10 (1990) 2385–2399.

    CAS  PubMed  Google Scholar 

  • Paulsen, R.E. and Fonnum, F., Role of glial cells for the basal and Ca2+-dependent K+-evoked release of transmitter amino acids investigated by microdialysis, J. Neurochem., 52 (1989) 1823–1827.

    Article  CAS  PubMed  Google Scholar 

  • Rainbow, T.C., Wieczorek, C.M. and Halpain, S., Quantitative autoradiography of binding sites for [3H]AMPA, a structural analogue of glutamic acid, Brain Res., 309 (1984) 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, D.V., Surgery in the rat during electrical analgesia induced by focal brain stimulation, Science, 164 (1969) 444–445.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, A.D. and Gebhart, G.F., Pain-induced alteration of glutamate in periaqueductal central gray and its reversal by morphine, Life Sci., 15 (1975) 1781–1789.

    Article  Google Scholar 

  • Watkins, J.C. and Evans, R.H., Excitatory amino acid transmitters, Annu. Rev. Pharmacol. Toxicol., 21 (1981) 165–204.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, J.C., Krogsgaard-Larsen, P. and Honoré, T., Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists, Trends Pharmacol. Sci., 11 (1990) 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Wenthold, R.J., Dechesne, C.J. and Wada, K., Isolation, localization and cloning of a kainic acid binding protein from frog brain, J. Histochem. Cytochem., 38 (1990) 1717–1723.

    Article  CAS  PubMed  Google Scholar 

  • Wiklund, L., Behzadi, G., Kalen, P., Headley, P.M., Nicolopoulos, L.S., Parsons, C.G. and West, D.C., Autoradiographic and electrophysiological evidence for excitatory amino acid transmission in the periaqueductal gray projection to nucleus raphe magnus in the rat, Neurosci. Lett., 93 (1988) 158–163.

    Article  CAS  PubMed  Google Scholar 

  • Yaksh, T.L. and Rudy, T.A., Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques, Pain, 4 (1978) 299–360

    Article  CAS  PubMed  Google Scholar 

  • Yingcharoen, K., Rinvik, E., Storm-Mathisen, J. and Ottersen, O.P., GABA, glycine, glutamate, aspartate and taurine in the perihypoglossal nuclei: an immunocytochemical investigation in the cat with particular reference to the issue of amino acid colocalization, Exp. Brain Res., 78 (1989) 345–357.

    Article  CAS  PubMed  Google Scholar 

  • Young, A.B. and Fagg, G.E., Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches, Trends Pharmacol. Sci., 11 (1990) 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Young, E.G., Watkins, L.R. and Mayer, D.J., Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia, Brain Res., 290 (1984) 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Zorumski, C.F. and Yang, J., AMPA, kainate and quisqualate activate a common receptor-channel complex on embryonic chick motoneurons, J. Neurosci., 8 (1988) 4277–4286.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beitz, A.J., Williams, F.G. (1991). Localization of Putative Amino Acid Transmitters in the PAG and their Relationship to the PAG-Raphe Magnus Pathway. In: Depaulis, A., Bandler, R. (eds) The Midbrain Periaqueductal Gray Matter. NATO ASI Series, vol 213. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3302-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3302-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6453-5

  • Online ISBN: 978-1-4615-3302-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics