Skip to main content

An Oscillatory Correlation Theory of Temporal Pattern Segmentation

  • Chapter
Neural Representation of Temporal Patterns

Abstract

Acoustic energy from many different sources is present in the environment at all times. In order for a listener to recognize and understand the auditory environment, it is necessary to disentangle the acoustic wave form and analyze each separate event. This process is referred to as temporal pattern segmentation, or auditory scene analysis (Bregman, 1990). Its task is to break down an auditory scene, or total acoustic input, into a number of coherent segments, each of which has a high probability of coming from the same source. Temporal pattern segmentation (temporal segmentation for short) is a remarkable achievement of the auditory system, playing a fundamental role in auditory perception. It has much in common with visual segmentation of a scene into different objects. Segmentation can be based on either current input or prior knowledge. Segmentation based on current input relies on the similarities of local qualities within the input pattern itself, such as frequency, timing, or amplitude. On the other hand, segmentation based on prior knowledge relies on patterns stored in memory to segregate the auditory input. These two processes occur simultaneously in auditory scene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbib, M.A., 1989, “The Metaphorical Brain 2: Neural Networks and Beyond ”, Wiley Interscience, New York, NY.

    Google Scholar 

  • Beauvois, M.W., and Meddis, R., 1991, A computer model of auditory stream segregation, Quart. J. Exp. Psychol. 43 A:517.

    Google Scholar 

  • Bregman, A.S., 1990, “Auditory Scene Analysis ”, MIT Press, Cambridge MA.

    Google Scholar 

  • Bregman, A.S., 1978, The formation of auditory streams, in: “Attention and Performance VII ”, J. Requin, ed., Lawrence Erlbaum Associates, Hillsdale NJ.

    Google Scholar 

  • Bregman, A.S., and Campbell, J., 1971, Primary auditory stream segregation and perception of order in rapid sequences of tones, J. Exp. Psychol. 89:244.

    Article  PubMed  CAS  Google Scholar 

  • Bregman, A.S., Abramson, J., Doehring, P., and Darwing, C.J., 1985, Spectral integration based on common amplitude modulation, Percept. Psychophys. 37:483.

    Article  PubMed  CAS  Google Scholar 

  • Buhmann, J, 1989, Oscillations and low firing rates in associative memory neural networks, Phys. Rev. A 40:4145.

    Article  PubMed  Google Scholar 

  • Cherry, E.C, 1953, Some experiments on the recognition of speech, with one and with two ears, J. Acoust. Soc. Am. 25:975.

    Article  Google Scholar 

  • Cole, R.A., and Scott, B., 1973, Perception of temporal order in speech: the role of vowel transitions, Can. J. Psychol. 27:441.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F., 1984, Function of the thalamic reticular complex: The searchlight hypothesis, Proc. Natl. Acad. Sci. USA 81:4586.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F., 1994, “The Astonishing Hypothesis ”, Scribner, New York, NY.

    Google Scholar 

  • Dannenbring, G.L., and Bregman, A.S., 1976, Effect of silence between tones on auditory stream segregation, J. Acoust. Soc. Am. 59:987.

    Article  PubMed  CAS  Google Scholar 

  • Dear, S.P., Simmons, J.A., and Fritz, J., 1993, A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat, Nature 364:620.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, W.J., 1973, The perception of interleaved melodies, Cognit. Psychol. 5:322.

    Article  Google Scholar 

  • Dowling, W.J., Lund, K.M-T., and Herrbold, S., 1987, Aiming attention in pitch and time in the perception of interleaved melodies, Percept. Psychophys. 41:642.

    Article  PubMed  CAS  Google Scholar 

  • Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and Reitboeck, H.J., 1988, Coherent oscillations: A mechanism of feature linking in the visual cortex?Biol. Cybern. 60:121.

    Article  PubMed  CAS  Google Scholar 

  • Ellias, S.A., and Grossberg, S., 1975, Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks, Biol. Cybern. 20:69.

    Article  Google Scholar 

  • Engel, A.K., König, P., Kreiter, A.K., and Singer, W., 1991, Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat, Proc. Natl. Acad. Sci. USA 88:6048.

    Article  PubMed  CAS  Google Scholar 

  • Engel, A.K., König, P., Kreiter, A.K., and Singer, W., 1991, Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex, Science 252:1177.

    Article  Google Scholar 

  • Freeman, W.J., 1991, Nonlinear dynamics in olfactory information processing, in: “Olfaction ”, J.L. Davis, and H. Eichenbaum, eds., MIT Press, Cambridge MA.

    Google Scholar 

  • Galambos, R., Makeig, S., and Talmachoff, P.J., 1981, A 40-Hz auditory potential recorded from the human scalp, Proc. Natl. Acad. Sci. USA 78:2643.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, Y., Vaadia, E., and Abeles, M., 1989, Single unit activity in the auditory cortex of a monkey performing a short term memory task, Exp. Brain Res. 74:139.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C.M., König, P., Engel, A.K., and Singer, W., 1989, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature 338:334.

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer, J., and Holmes, P., 1983, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields ”, Springer-Verlag, New York, NY.

    Google Scholar 

  • Handel, S., 1989, “Listening: An Introduction to the Perception of Auditory Events ”, MIT Press: Cambridge, MA.

    Google Scholar 

  • Hocherman, S., and Gilat, E., 1981, Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat, J. Neurophysiol. 45:987.

    PubMed  CAS  Google Scholar 

  • Hopfield, J.J., and Tank, D.W., 1989, Neural architecture and biophysics for sequence recognition, in: “Neural Models of Plasticity ”, J.H. Byrne, and W.O. Berry, eds., Academic Press, San Diego CA.

    Google Scholar 

  • Jones, M.R., 1976, Time, our lost dimension: toward a new theory of perception, attention, and memory, Psychol. Rev. 83:323.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.R., Jagacinski, R.J., Yee, W., Floyd, R.L., and Klapp, S.T., 1994, Tests of attentional flexibility in listening to polyrhythmic patterns, J. Exp. Psychol.: Human Percept. Perform., in press.

    Google Scholar 

  • Jones, M.R., Kidd, G., and Wetzel, R., 1981, Evidence for rhythmic attention, J. Exp. Psychol: Human Percept. Perform. 7:1059.

    Article  CAS  Google Scholar 

  • Jones, M.R., and Yee, W., 1993, Attending to auditory events: the role of temporal organization, in “Thinking in Sound ”, S. McAdams and E. Bigand, ed., Clarendon Press, Oxford, UK.

    Google Scholar 

  • Kammen, D.M., Holmes, P.J, and Koch, C., 1989, Origin of oscillations in visual cortex: Feedback versus local coupling, in: “Models of Brain Functions ”, R.M.J. Cotterill, ed., Cambridge University Press, Cambridge UK.

    Google Scholar 

  • Kandel, E.R., Schwartz, J.H, and Jessell, T.M., 1991, “Principles of Neural Science (3rd Ed.) ”, Elsevier, New York, NY.

    Google Scholar 

  • Llinás, R., and Ribary, U., 1993, Coherent 40-Hz oscillation characterizes dream state in humans, Proc. Natl. Acad. Sci. USA 90:2078.

    Article  PubMed  Google Scholar 

  • Madler, C., and Pöppel, E., 1987, Auditory evoked potentials indicate the loss of neuronal oscillations during general anesthesia, Naturwissenschaften 74:42.

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä, J.P., and Hari, R., 1987, Evidence for cortical origin of the 40 Hz auditory evoked response in man, Electroencephalogr. Clin. Neurophysiol. 66:539.

    Article  Google Scholar 

  • McKenna, T.M., Weinberger, N.M., and Diamond, D.M., 1989, Responses of single auditory cortical neurons to tone sequences, Brain Res. 481:142.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G.A., and Heise, G.A., 1950, The trill threshold, J. Acoust. Soc. Am. 22:637.

    Article  Google Scholar 

  • Milner, P.M., 1974, A model for visual shape recognition, Psychol. Rev. 81:521.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.P., and Scofield, C.L., 1991, “Neural Networks and Speech Processing ”, Kluwer Academic, Norwell MA.

    Book  Google Scholar 

  • Murthy, V.N., and Fetz, E.E., 1992, Coherent 25-to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys, Proc. Natl. Acad. Sci. USA 89:5670.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, T.W., 1976, Separation of speech from interfering speech by means of harmonic selection, J. Acoust. Soc. Am. 60:911.

    Article  Google Scholar 

  • Popper, A.N., and Fay, R.R., eds., 1992, “The Mammalian Auditory Pathway: Neurophysiology ”, Springer-Verlag, New York, NY.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., “Numerical Recipes in C: The Art of Scientific Computing ”, 2nd Ed., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rabiner, L.R., and Juang, B.H., 1986, An introduction to hidden Markov models, IEEE Acoust., Speech, Signal Process. Magazine 3:4.

    Google Scholar 

  • Rasch, R.A., 1978, The perception of simultaneous notes such as in polyphonic music, Acustica 40:22.

    Google Scholar 

  • Ribary, U., Ioannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P.R., Lado, F., Mogilner, A., and Llinás, R., 1991, Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans, Proc. Natl. Acad. Sci. USA 88:11037.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, B., and Bregman, A.S., 1991, Effects of the pattern of spectral spacing on the perceptual fusion of harmonics, J. Acoust. Soc. Am. 90:3050.

    Article  Google Scholar 

  • Somers, D., and Kopell, N., 1993, Rapid synchronization through fast threshold modulation, Biol. Cybern. 68:393.

    Article  PubMed  CAS  Google Scholar 

  • Sompolinsky, H., Golomb, D., and Kleinfeld, D., 1990, Global processing of visual stimuli in a neural network of coupled oscillators, Proc. Natl. Acad. Sci. USA 87:7200.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O., Gaily, J.A., Reeke Jr., G.N., and Edelman, G.M., 1989, Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity, Proc. Natl. Acad. Sci. USA 86:7265.

    Article  PubMed  CAS  Google Scholar 

  • Tank, D.W., and Hopfield, J.J., 1987, Neural computation by concentrating information in time, Proc. Natl. Acad. Sci. USA 84:1896.

    Article  PubMed  CAS  Google Scholar 

  • van Noorden, L.P.A.S., 1975, “Temporal Coherence in the Perception of Tone Sequences ”, Ph.D dissertation, The Institute of Perception Research, Eindhoven, The Netherlands.

    Google Scholar 

  • von der Malsburg, C., 1981, The correlation theory of brain function, Internal Report 81–2, Max-Planck-Institut for Biophysical Chemistry, Göttingen, Germany.

    Google Scholar 

  • von der Malsburg, C., and Schneider, W., 1986, A neural cocktail-party processor, Biol. Cybern. 54:29.

    Article  PubMed  Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G.E., Shikano, K., and Lang, K.J., 1989, Phoneme recognition using time-delay neural networks, IEEE Trans. Acoust. Speech. Signal Process. 37:328.

    Article  Google Scholar 

  • Wang, D.L., 1993a, Modeling global synchrony in the visual cortex by locally coupled neural oscillators, Proc 15th Ann. Conf. Cog. Sci., 1058.

    Google Scholar 

  • Wang, D.L., 1993b, Pattern recognition: Neural networks in perspective, IEEE Expert 8:52.

    Article  CAS  Google Scholar 

  • Wang, D.L., 1994, Auditory stream segregation based on oscillatory correlation, Proc. IEEE 1994 Workshop on Neural Networks for Signal Processing, 624.

    Chapter  Google Scholar 

  • Wang, D.L., 1995, Emergent synchrony in locally coupled neural oscillators, IEEE Trans. Neural Networks, in press.

    Google Scholar 

  • Wang, D.L., 1995, Temporal pattern processing in neural networks, in: “Handbook of Brain Theory and Neural Networks ”, M.A. Arbib, ed., MIT Press, Cambridge MA.

    Google Scholar 

  • Wang, D.L., Buhmann, J., and von der Malsburg, C., 1990, Pattern segmentation in associative memory, Neural Computat. 2: 95. Reprinted in: “Olfaction ”, J.L. Davis, and H. Eichenbaum, eds., MIT Press, Cambridge MA.

    Article  Google Scholar 

  • Warren R.M., Obusek C.J., Farmer R.M., and Warren, R.P., 1969, Auditory sequence: Confusion of patterns other than speech or music, Science 164:586.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, M., 1986, A computational model for separating two simultaneous talkers, in: IEEE ICASSP, Tokyo, 81.

    Google Scholar 

  • Wilson H.R., and J.D. Cowan, 1972, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. 12:1.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J.A., 1992, The functional architecture of the medial geniculate body and the primary auditory cortex, in: “The Mammalian Auditory Pathway: Neuroanatomy ”, D.B. Webster, A.N. Popper, and R.R. Fay, eds., Springer-Verlag, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, D.L. (1995). An Oscillatory Correlation Theory of Temporal Pattern Segmentation. In: Covey, E., Hawkins, H.L., Port, R.F. (eds) Neural Representation of Temporal Patterns. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1919-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1919-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5785-8

  • Online ISBN: 978-1-4615-1919-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics