Skip to main content

Formal Models of Age Differences in Task-Complexity Effects

  • Chapter
Understanding Human Development

Abstract

Sometimes, older adults perform just as well and even just as fast as younger adults— even in relatively complex cognitive tasks tapping the “mechanics of cognition” (Baltes, 1997, this volume). This chapter attempts to unravel the possible reasons for this astonishing phenomenon. In particular, we argue that theoretically predicted age invariance under speeded task conditions constitutes the optimal baseline for delineating domains of functioning according to the severity of associated age differences. In the first part of this chapter, we address the general issue of how process-specific effects can be delineated from general effects of aging in cognitive functions. The critical observation here is that very often an age difference is already present in an experimental condition meant to serve as a baseline for the assessment of an age difference in a cognitive process in a more complex condition. We propose experimental control techniques that may eliminate the interpretational ambiguity associated with such ordinal interactions. In the second and third parts, we illustrate this approach for research on movement timing and semantic memory access to demonstrate a clear delineation of processing domains with different degrees of age sensitivity. Although our research examples are from the field of cognitive aging, the proposal to eliminate baseline differences between quasi-experimental groups by means of experimental control should be useful as well for age contrasts in other segments of the lifespan (such as child development; cf. Wellman, this volume) and for comparative work involving other quasi-experimental variables (groups differing in health, social status, attitudes, and so on). A better understanding of basic constraints of the cognitive system will contribute to theoretical accounts of selection, optimization, and compensation, processes that have to operate within these constraints (Baltes & Baltes, 1990; M. Baltes & Carstensen, this volume). Therefore, in the final section, we discuss the implications of age-related functional dissociations for an understanding of adaptive processes that operate throughout the lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltes, P. B. (1997). On the incomplete architecture of human ontogeny: Selection, optimization, and compensation as foundation of developmental theory. American Psychologist, 52, 366–380.

    Article  PubMed  Google Scholar 

  • Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging: The model of selective optimization with compensation. In P. B. Baltes & M. M. Baltes (Eds.), Successful aging: Perspectives from the behavioral sciences (pp. 1–34). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Baltes, P. B., & Goulet, L. R. (1971). Exploration of developmental variables by manipulation and simulation of age differences in behavior. Human Development, 14, 149–170.

    Article  Google Scholar 

  • Baltes, P. B., Reese, H. W., & Nesselroade, J. R. (1977). Life-span developmental psychology: Introduction to research methods. Monterey, CA: Brooks Cole.

    Google Scholar 

  • Block, R. A., Zakay, D., & Hancock, P. A. (1998). Human aging and duration judgments: A meta-analytic review. Psychology and Aging, 13, 584–596.

    Article  PubMed  Google Scholar 

  • Bogartz, R. S. (1976). On the meaning of statistical interaction. Journal of Experimental Child Psychology, 22, 178–183.

    Article  Google Scholar 

  • Cerella, J. (1985). Information processing rates in the elderly. Psychological Bulletin, 98, 67–83.

    Article  PubMed  Google Scholar 

  • Cerella, J. (1990). Aging and information processing rates in the elderly. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (3rd ed., pp. 201–221). New York: Academic Press.

    Google Scholar 

  • Craik, F. I. M., & Hay, J. F. (1999). Aging and judgments of duration: Effects of task complexity and method of estimation. Perception and Psychophysics, 61(3), 549–560.

    Article  PubMed  Google Scholar 

  • Dixon, R. A., Kurzman, D., & Friesen, I. C. (1993). Handwriting performance in younger and older adults: Age, familiarity, and practice effects. Psychology and Aging, 8, 360–370.

    Article  PubMed  Google Scholar 

  • Duchek, J. M., Balota, D. A., & Ferraro, F. R. (1994). Component analysis of a rhythmic finger-tapping task in individuals with senile dementia of the Alzheimer’s type and in individuals with Parkinson’s disease. Neuropsychology, 8, 218–226.

    Article  Google Scholar 

  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406.

    Article  Google Scholar 

  • Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999). Individual differences information-processing rate and amount: Implications for group differences in response latency. Psychological Bulletin, 125, 777–799.

    Article  PubMed  Google Scholar 

  • Fetterman, J. G., & Killeen, P. R. (1992). Time discrimination in Colombia livia and Homo sapiens. Journal of Experimental Psychology: Animal Behavior Processes, 78(1), 80–94.

    Article  Google Scholar 

  • Fitzgerald, J. M. (1983). A developmental study of recall from natural categories. Developmental Psychology, 19, 9–14.

    Article  Google Scholar 

  • Gibbon, J., Church, R. M., & Meek, W. H. (1984). Scalar timing in memory. In L. Allan & J. Gibbon (Eds.), Timing and time perception (Vol. 423, pp. 52–77). New York: Annals of the New York Academy of Science.

    Google Scholar 

  • Gilmore, G. C, Morrison, S. R., Behi, N. L., & Koss, E. (2000). Information processing speed is the same for healthy adults and Alzheimer’s disease patients when proximal stimulus strength is equated. Paper presented at Cognitive Aging Conference, Atlanta.

    Google Scholar 

  • Greene, L. S., & Williams, H. G. (1993). Age-related differences in timing control of repetitive movement: Application of the Wing-Kristofferson model. Research Quarterly for Exercise and Sport, 64, 32–38.

    Article  PubMed  Google Scholar 

  • Hale, S., Lima, S. D., & Myerson, J. (1991). General cognitive slowing in the nonlexical domain: An experimental validation. Psychology and Aging, 6, 512–521.

    Article  PubMed  Google Scholar 

  • Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heckhausen, J., & Mayr, U. (1998). Entwicklungsregulation und Kontrolle im Erwachsenenalter und Alter: Lebenslaufpsychologische Perspektiven [Developmental regulation and control across adulthood: A lifespan psychological perspective]. In H. Keller (Ed.), Entwicklungspsychologie [Developmental Psychology] Bern: Huber.

    Google Scholar 

  • Ivry, R., & Corcos, D. M. (1993). Slicing the variability pie: Component analysis of coordination and motor dysfunction. In K. Newell & D. M. Corcos (Eds.), Variability and motor control (pp. 415–447). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinions in Neurobiology, 6, 851–857.

    Article  Google Scholar 

  • Ivry, R. B., & Hazeltine, R. E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology: Human Perception and Performance, 27, 3–18.

    Article  Google Scholar 

  • Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1(2), 136–152.

    Article  PubMed  Google Scholar 

  • Jagacinski, R. J., Liao, M.-J., & Fayyad, E. A. (1995). Generalized slowing in sinusoidal tracking by older adults. Psychology and Aging, 70(1), 8–19.

    Article  Google Scholar 

  • Jenkins, L., Myerson, J., Joerding, J. A., Hale, S. (2000). Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychology and Aging, 15, 157–175.

    Article  PubMed  Google Scholar 

  • Keele, S. W., & Hawkins, H. L. (1982). Explorations of individual differences relevant to high level skill. Journal of Motor Behavior, 14, 3–23.

    Article  PubMed  Google Scholar 

  • Keele, S. W., & Ivry, R. (1991). Does the cerebellum provide a common computation for diverse tasks? In B. M. Boland, J. Cullinan, & L. H. Mehta (Eds.), Annals of the New York Academy of Science (Vol.608, pp. 179–211). New York: New York Academy of Science.

    Google Scholar 

  • Kliegl, R., Fanselow, G., Junker, M., Schlesewsky, M., & Oberauer, K. (2000). Age simulation of syntactic complexity effects by control of reading time.

    Google Scholar 

  • Kliegl, R., Mayr, U., & Krampe, R. T. (1994). Time-accuracy functions for determining process and person differences: An application to cognitive aging. Cognitive Psychology, 26, 134–164.

    Article  PubMed  Google Scholar 

  • Kliegl, R., Mayr, U., & Oberauer, K. (2000). Resource limitations and process dissociations in individual differences research. In U. van Hecker, S. Dutke, & G. Sedek (Eds.), Generative mental processes and cognitive resources: Integrative research on adaptation and control, (pp. 337–366). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Krampe, R. T., Engbert, R., & Kliegl, R. (2001). Age-specific problems in rhythmic timing. Psychology and Aging, 16, 12–30.

    Article  PubMed  Google Scholar 

  • Krampe, R. T., & Ericsson, K. A. (1996). Maintaining excellence: Deliberate practice and elite performance in young and older pianists. Journal of Experimental Psychology: General, 125, 331–359.

    Article  Google Scholar 

  • Krampe, R. T., Kliegl, R., Mayr, U., Engbert, R., & Vorberg, D. (2000). The fast and the slow of skilled bimanual rhythm production: Parallel vs. integrated timing. Journal of Experimental Psychology: Human Perception and Performance, 26, 206–233.

    Article  PubMed  Google Scholar 

  • Krampe, R. T., Mayr, U., & Kliegl, R. (2002). Timing, sequencing, and executive control in repetitive movement production. Manuscript submitted for publication.

    Google Scholar 

  • Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112–136). New York: Wiley.

    Google Scholar 

  • Laver, G. D., & Burke, D. M. (1993). Why do semantic priming effects increase in old age? A meta-analysis. Psychology and Aging, 8, 34–43.

    Article  PubMed  Google Scholar 

  • Lemaire, R, & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children’s learning of multiplication. Journal of Experimental Psychology: Genera, 124, 83–97.

    Article  Google Scholar 

  • Lima, S. D., Hale, S., & Myerson, J. (1991). How general is general slowing? Evidence from the lexical domain. Psychology and Aging, 6, 416–425.

    Article  PubMed  Google Scholar 

  • Loftus, G. R. (1978). On interpretation of interactions. Memory and Cognition, 6, 312–319.

    Article  Google Scholar 

  • Logan, G. D. (1988). Toward and instance theory of automatization. Psychological Review, 95, 492–527.

    Article  Google Scholar 

  • Madden, D. J., Pierce, T. W., & Allen, P. A. (1992). Adult age differences in attentional allocation during memory search. Psychology and Aging, 7, 594–601.

    Article  PubMed  Google Scholar 

  • Maylor, E. A., & Rabbitt, P. M. A. (1994). Applying Brinley plots to individuals: Effects of aging on performance distributions in two speeded tasks. Psychology and Aging, 9, 224–230.

    Article  PubMed  Google Scholar 

  • Mayr, U. (2001). Age differences in the selection of mental sets: The role of inhibition, stimulus ambiguity, and response set overlap. Psychology and Aging, 16, 96–109.

    Article  PubMed  Google Scholar 

  • Mayr, U., & Kliegl, R. (1993). Sequential and coordinative complexity: Age-based processing limitations in figural transformations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1297–1320.

    Article  PubMed  Google Scholar 

  • Mayr, U., & Kliegl, R. (2000). Complex semantic processing in old age: Does it stay or does it go? Psychology and Aging, 75, 29–43

    Article  Google Scholar 

  • Mayr, U., & Kliegl, R. (2000b). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition 26, 1124–1140.

    Article  Google Scholar 

  • Mayr, U., Kliegl, R., & Krampe, R. T. (1996). Sequential and coordinative processing dynamics across the life span. Cognition, 59, 61–90.

    Article  PubMed  Google Scholar 

  • McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376–390.

    Article  PubMed  Google Scholar 

  • Moscovitch, M., & Winocur, G. (1992). The neuropsychology of memory and aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 315–372). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Myerson, J., Hale, S., Wagstaff, D., Poon, L. W, & Smith, G. A. (1990). The information-loss model: A mathematical theory of age-related cognitive slowing. Psychological Review, 97, 475–487.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A. (1985a). Speed of behavior and its implications for cognition. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (pp. 400–426). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Salthouse, T. A. (1985b). A theory of cognitive aging. Amsterdam: Elsevier.

    Google Scholar 

  • Salthouse, T. A. (1993). Speed mediation of adult age differences in cognition. Developmental Psychology, 29, 722–738.

    Article  Google Scholar 

  • Salthouse, T. A. (1996). A processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A., & Kersten, A. W. (1993). Decomposing adult age differences in symbol arithmetic. Memory and Cognition, 21, 699–710.

    Article  PubMed  Google Scholar 

  • Stelmach, G. E., Amrhein, P. C, & Goggin, N. L. (1988). Age differences in bimanual coordination. Journal of Gerontology: Psychological Sciences, 43, 18–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kliegl, R., Krampe, R.T., Mayr, U. (2003). Formal Models of Age Differences in Task-Complexity Effects. In: Staudinger, U.M., Lindenberger, U. (eds) Understanding Human Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0357-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0357-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7383-0

  • Online ISBN: 978-1-4615-0357-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics