Skip to main content

What Can Neuroscience Tell Us About Abstract Concepts

  • Chapter
  • First Online:
Words as Social Tools: An Embodied View on Abstract Concepts

Part of the book series: SpringerBriefs in Psychology ((BRIEFSCOGNIT))

  • 1300 Accesses

Abstract

In this chapter, we present neuroscientific evidence that concrete and abstract concepts are represented, at least in part, differently in the brain. The concreteness and the reversed concreteness effect observed in patients with different pathology and with different location of brain lesions indicate a double dissociation of these effects. On the other hand, they demonstrate that concrete and abstract concepts are processed, at least partially, in parallel. One important factor in the concreteness effect is imageability of the perceived concepts, because careful control for imageability can abolish the concreteness effect or even lead to its reversion. The literature on imaging of processing abstract and concrete concepts is inconsistent. But, one conclusion from imaging is almost certain: Processing of abstract and concrete concepts shares neural representations, which contain also sensorimotor areas. The issue of whether specific representations for abstract and concrete concepts exist is far more difficult, since some studies report more activations of left hemispheric areas and some others report right lateralized activations for abstract concepts. However, there is growing evidence that the semantic system is involved in the processing of abstract words. This is consistent with the WAT approach, according to which abstract concepts activate more the linguistic networks. WAT also predicts that both concrete and abstract words activate the sensorimotor network and the distributed network associated with their meaning/content.

To be an abstract painter does not mean to abstract from naturally occurring opportunities for comparison, but, quite apart from such opportunities, to distil pure pictorial relations: light to dark, colour to light and dark, colour to colour, long to short, broad to narrow, sharp to dull, left–right, above–below, behind–in front, circle to square to triangle.

Paul Klee

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apps, M. A., Balsters, J. H., & Ramnani, N. (2012). The anterior cingulate cortex: Monitoring the outcomes of others ‘ decisions. Social Neuroscience, 7(4), 424–435.

    Article  PubMed  Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.

    PubMed  Google Scholar 

  • Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 1177–1187.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91.

    Article  PubMed  Google Scholar 

  • Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905–917.

    Article  PubMed  Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. (2009). Where is the semantic system ? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.

    Article  PubMed Central  PubMed  Google Scholar 

  • Binder, J. R., & Desai, R. H. (2011). The Neurobiology of Semantic Memory. Trends in Cognitive Sciences, 15(11), 527–536.

    Article  PubMed Central  PubMed  Google Scholar 

  • Binkofski, F., Amunts, K., Stephan, K. M., Posse, S., Schormann, T., Freund, H.-J., et al. (2000). Broca’s Region Subserves Imagery of Motion: A Combined Cytoarchitectonic and fMRI Study. Human Brain Mapping, 11(273–285), 2000.

    Google Scholar 

  • Bonner, M. F., Vesely, L., Price, C., Anderson, C., Richmond, L., Farag, C., et al. (2009). Reversal of the concreteness effect in semantic dementia. Cognitive Neuropsychology, 26, 568–579.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of emantic processing. Annual Review of Neuroscience, 25, 151–188.

    Article  PubMed  Google Scholar 

  • Borst, G., & Kosslyn, S. M. (2008). Visual mental imagery and visual perception: Structural equivalence revealed by scanning processes. Memory and Cognition, 36, 849–862.

    Article  PubMed  Google Scholar 

  • Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the concreteness effect in a patient with semantic dementia. Cognitive Neuropsychology, 11, 617–660.

    Article  Google Scholar 

  • Bub, D., & Kertesz, A. (1982). Deep agraphia. Brain and Language, 17(1), 146–165.

    PubMed  Google Scholar 

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.

    Article  PubMed  Google Scholar 

  • Castelli, F., Frith, C., Happe, F., & Frith, U. (2002). Autism, Asperger Syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 1839–1849.

    Article  PubMed  Google Scholar 

  • Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12, 314–325.

    Article  PubMed  Google Scholar 

  • Caramazza, A., Berndt, R. S., Basili, A. G., & Koller, J. J. (1981). Syntactic processing deficits in a case of conduction aphasia. Brain and Language, 14, 235–271.

    Article  PubMed  Google Scholar 

  • Coltheart, M. (1980). Deep dyslexia: A right-hemisphere hypothesis. In M. Coltheart, K. Patterson, & J. Marshall (Eds.), Deep dyslexia (pp. 326–380). London: Routledge & Kegan Paul.

    Google Scholar 

  • Coltheart, M., Patterson. K., Marshall, J. C. (1987). Deep dyslexia since 1980. M. Coltheart, K. Patterson & J.C. Marshall (Ed.) Deep dyslexia (2nd ed.). International library of psychology (pp. 407–451). New York: Routledge (xi, pp. 490 phasia. Cortex, 17, 333–348).

    Google Scholar 

  • Crutch, S. J., Troche, J., Reilly, J., & Ridgway, G. R. (2013). Abstract conceptual feature ratings: the role of emotion, magnitude, and other cognitive domains in the organization of abstract conceptual knowledge. Frontiers in Human Neuroscience, 7, 186. doi:10.3389/fnhum.2013.00186

    Article  PubMed Central  PubMed  Google Scholar 

  • Desai, D. H., Binder, J. R., Conant, L. L., & Seidenberg, M. S. (2010). Activation of Sensory-Motor Areas in Sentence Comprehension. Cerebral Cortex, 20, 468–478.

    Article  PubMed Central  PubMed  Google Scholar 

  • D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D., Tippet, L. J., et al. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35, 725–730.

    Article  PubMed  Google Scholar 

  • Farah, M. J. (1995). The neural bases of mental imagery. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 963–975). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Fiebach, C. J., & Friederici, A. D. (2004). Processing concrete words: fMRI evidence against a specific right-hemisphere involvement. Neuropsychologia, 42, 62–70.

    Article  PubMed  Google Scholar 

  • Fliessbach, K., Weis, S., Klaver, P., Elger, C. E., & Weber, B. (2006). The effect of word concreteness on recognition memory. Neuroimage, 32, 1413–1421.

    Article  PubMed  Google Scholar 

  • Friederici, A. D., Opitz, B., & Cramon, D. Y. (2000). Segregating semantic and syntactic aspects of processing in the human brain: An fMRI investigation of different word types. Cerebral Cortex, 10, 698–705.

    Article  PubMed  Google Scholar 

  • Gallese, V. (2003). The manifold nature of interpersonal relations: the quest for a common mechanism. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431), 517–528.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghio, M., Vaghi, M. M. S., & Tettamanti, M. (2013). Fine-Grained Semantic Categorization across the Abstract and Concrete Domains. PLoS ONE, 8(6), e67090. doi:10.1371/journal.pone.0067090

    Article  PubMed Central  PubMed  Google Scholar 

  • Glenberg, A. M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D., & Buccino, G. (2008). Processing abstract language modulates motor system activity. The Quarterly Journal of Experimental Psychology, 61, 905–919.

    Article  PubMed  Google Scholar 

  • Goodglass, M., Hydel, M. R., & Blumstein, S. (1969). Frequency, Picturability and Availability of Nouns in Aphasia. Cortex, 5(2), 104–119.

    Article  PubMed  Google Scholar 

  • Grossman, M., Koenig, P., DeVita, C., Glosser, G., Alsop, D., & Detre, J. (2002). The neural basis for category-specific knowledge: An fMRI study. Neuroimage, 15, 936–948.

    Article  PubMed  Google Scholar 

  • Halpern, A. R., & Zatorre, R. J. (1999). When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies. Cerebral Cortex, 9, 697–704.

    Article  PubMed  Google Scholar 

  • Harris, G. J., Chabris, C. F., Clark, J., Urban, T., Aharon, I., Steele, S., et al. (2006). Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging. Brain and Cognition, 61, 54–68.

    Article  PubMed  Google Scholar 

  • Hoffman, P., & Lambon Ralph, M. A. (2011). Reverse concreteness effects are not a typical feature of semantic dementia: evidence for the hub-and-spoke model of conceptual representation. Cerebral Cortex, 21, 2103–2112.

    Article  PubMed  Google Scholar 

  • James, C. T. (1975). The role of semantic information in lexical decisions. Journal of Experimental Psychology: Human Perception and Performance, 104(2), 130–136.

    Google Scholar 

  • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33, 1419–1432.

    Article  PubMed  Google Scholar 

  • Jeannerod, M., & Decety, J. (1995). Mental motor imagery: A window into the representational stages of action. Current Opinion in Neurobiology, 5, 727–732.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, 103–109

    Google Scholar 

  • Jessen, F., Heun, R., Erb, M., Granath, D., Klos, U., & Papassotiropoulos, A. (2000). The concreteness effect: Evidence for dual-coding and context availability. Brain and Language, 74, 103–112.

    Article  PubMed  Google Scholar 

  • Katz, R. B., & Goodglass, H. (1990). Deep dysphasia: Analysis of a rare form of repetition disorder. Journal of Brain and Language, 39(1), 153–185.

    Article  Google Scholar 

  • Kiehl, K. A., Liddle, P. F., Smith, A. M., Mendrek, A., Forster, B. B., & Hare, R. D. (1999). Neural pathways involved in the processing of concrete and abstract words. Human Brain Mapping, 7, 225–233.

    Article  PubMed  Google Scholar 

  • Kousta, S., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34.

    Article  Google Scholar 

  • Kroll, J. F., & Merves, J. S. (1986). Lexical access for concrete and abstract words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(1), 92–107.

    Google Scholar 

  • Lane, R. D., Reiman, E. M., & Schwartz, G. E. (1998). Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 10(4), 525–535.

    PubMed  Google Scholar 

  • Locke, J. (1685). Of abstract and concrete terms. In An essay on human understanding. Retrieved April 15, 2012, from: http://oregonstate.edu/instruct/phl302/texts/locke/locke1/Essay_contents.html

  • Marschark, M., Richman, C. L., Yuille, J. C., & Hunt, R. R. (1987). The role of imagery in memory: On shared and distinctive information. Psychological Bulletin, 102, 28–41.

    Article  PubMed  Google Scholar 

  • Martin, N., & Saffran, E. M. (1992). A computational account of deep dysphasia: Evidence from a single case study. Brain and Language, 43(2), 240–274.

    PubMed  Google Scholar 

  • Mestres-Missè, A., Münte, T. F., & Rodriguez-Fornells, A. (2008). Functional neuroanatomy of contextual acquisition of concrete and abstract words. Journal of Cognitive Neuroscience, 20, 2153–2166.

    Article  PubMed  Google Scholar 

  • Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantics. Neuroimage, 22, 164–170.

    Article  PubMed  Google Scholar 

  • Paivio, A. (1967). Paired-associated learning and free recall of nouns as a function of concreteness, specificity, imagery and meaningfulness. Psychological Reports, 20, 239–245.

    Google Scholar 

  • Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 45, 255–287.

    Article  Google Scholar 

  • Perani, D., Cappa, S. F., Schnur, T., Tettamanti, M., Collina, S., & Rosa, M. M. (1999). The neural correlates of verb and noun processing: An PET study. Brain, 122, 2337–2344.

    Article  PubMed  Google Scholar 

  • Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). Neural correlates of concreteness in semantic categorization. Journal of Cognitive Neuroscience, 19, 1407–1419.

    Article  PubMed  Google Scholar 

  • Reilly, J., Grossman, M., & McCawley, G. (2006). Concreteness effects in lexical processing of semantic dementia. Brain and Language, 99, 147–148.

    Article  Google Scholar 

  • Roeltgen, D. P., Sevush, S., & Heilman, K. (1983). Phonological agraphia Writing by the lexical-semantic route. Neurology, 33, 755.

    Article  PubMed  Google Scholar 

  • Rüschemeyer, S.-A., Brass, M., & Frederici, A. D. (2007). Comprehending Prehending: Neural Correlates of Processing Verbs with Motor Stems. Journal of Cognitive Neuroscience, 19(5), 855–865.

    Article  PubMed  Google Scholar 

  • Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. Neuroimage, 27, 188–200.

    Article  PubMed  Google Scholar 

  • Saffran, E. M., & Martin, N. (1990). Neuropsychological evidence for lexical involvement in short-term memory. In G. Vallar & T. Shallice (Eds.), Neuropsychological impairments of short-term memory (vol. xiii, pp. 145–166, 524 pp). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F. (2013). Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in Human Neuroscience, 7, 125.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shallice, T., & Warrington, E. K. (1975). Word recognition in a phonemic dyslexic patient. The Quarterly Journal of Experimental Psychology, 27, 187–199.

    Article  PubMed  Google Scholar 

  • Shallice, T., & Cooper, P. C. (2013). Is there a semantic system for abstract words? Frontiers in Human Neuroscience, 7, 145.

    Article  Google Scholar 

  • Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499–520.

    Article  Google Scholar 

  • Schwanenflugel, P. J. (1991). Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The Psychology of Word Meanings (pp. 223–250). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Scorolli, C., Binkofski, F., Buccino, G., Nicoletti, R., Riggio, L., & Borghi, A. M. (2011). Abstract and Concrete Sentences, Embodiment, and Languages. Frontiers in Psychology, 2, 227.

    Article  PubMed Central  PubMed  Google Scholar 

  • Scorolli, C., Jacquet, P. O., Binkofski, F., Nicoletti, R., Tessari, A., & Borghi, A. M. (2012). Abstract and concrete phrases processing differentially modulates cortico-spinal excitability. Brain Research, 1488, 61–70.

    Article  Google Scholar 

  • Skipper, L.M., & Olson, I.R. (in press). Semantic Memory: Distinct Neural Representations for Abstractness and Valence. Brain and Language.

    Google Scholar 

  • Strain, E., Patterson, K., Seidenberg, & Mark, S. (1995). Semantic effects in single-word naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 1140–1154.

    PubMed  Google Scholar 

  • Tettamanti, M., Manenti, R., Rosa, P. A. D., Falini, A., Perani, D., Cappa, S. F., et al. (2008). Negation in the brain: Modulating action representations. Neuroimage, 43, 358–367.

    Article  PubMed  Google Scholar 

  • Vigliocco, G., Kousta, S., Della Rosa, A. P., Vinson, D. P., Tettamanti, M., Devlin, J. T., Cappa, S.F. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, pp. 1–11.

    Google Scholar 

  • Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1(2), 219–247.

    Article  Google Scholar 

  • Wallentin, M., Østergaard, S., Lund, T. E., Østergaard, L., & Roepstorff, A. (2005). Concrete spatial language: See what I mean? Brain and Language, 92, 221–233.

    Article  PubMed  Google Scholar 

  • Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 21(10), 1459–1468.

    Article  Google Scholar 

  • Warrington, E. K. (1975). The selective impairment of semantic memory. Quarterly Journal of Experimental Psychology, 27, 635–657.

    Article  PubMed  Google Scholar 

  • Weiss, S., & Mueller, H. M. (2013). The non-stop road from concrete to abstract: high concreteness causes the activation of long-range networks. Frontiers in Human Neuroscience. doi:10.3389/fnhum.2013.00526.

  • Whalen, P. J., Bush, G., Mcnally, R. J., Wilhelm, S., Mcinerney, S. C., Jenike, M. A., et al. (1998). The emotional counting stroop paradigm: A functional magnetic resonance imaging probe of the anterior cingulate affective division. Biological Psychiatry, 44, 1219–1228.

    Article  PubMed  Google Scholar 

  • Whatmough, C., Verret, L., Fung, D., & Chertkow, H. (2004). Common and contrasting areas of activation for abstract and concrete concepts: an H15 2O PET study. Journal of Cognitive Neuroscience, 16, 1211–1226.

    Article  PubMed  Google Scholar 

  • Wiemer-Hastings, K., Krug, J., & Xu, X. (2001). Imagery, context availability, contextual constraints and abstractness. In: Proceedings of the 23rd Annual Meeting of the Cognitive Science Society (pp. 1106–1111). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wilson-Mendenhall, C.D., Simmons, W.K., Martin, A., & Barsalou, L.W. (2013). Contextual processing of abstract concepts reveals neural representations of non-linguistic semantic content. Journal of Cognitive Neuroscience.

    Google Scholar 

  • Wise, R. J. S., Howard, D., Mummery, C. J., Fletcher, P., Leff, A., & Büchel, C. (2000). Noun imageability and the temporal lobes. Neuropsychol, 38, 985–994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Binkofski .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Binkofski, F., Borghi, A.M. (2014). What Can Neuroscience Tell Us About Abstract Concepts. In: Words as Social Tools: An Embodied View on Abstract Concepts. SpringerBriefs in Psychology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9539-0_5

Download citation

Publish with us

Policies and ethics