Skip to main content

The Frontal Lobes and Executive Functioning

  • Chapter
  • First Online:
Handbook of Executive Functioning

Abstract

The frontal lobes are often referred to as the seat of cognition and higher-order processing that play a role in virtually all domains of neuropsychological functioning; however, the examination of this mysterious cortical area is often plagued with dubiety. The frontal lobes have fascinated and perplexed scientists who study human behavior for decades, yet still remain largely understood (Filley, 2010). They play a role in virtually all neurological and psychiatric disorders (Levine & Craik, 2012) as well as in theories of development in children and adults. The frontal lobes regulate higher-order “executive” cognitive functions needed to successfully perform complex tasks in the environment. They include a number of psychological processes, including the selection and perception of pertinent information; maintenance, retrieval, and manipulation of information in working memory; self-directed behavior, planning, and organization; behavioral regulation and control in response to a changing environment; and appropriate decision-making on the basis of positive and negative outcomes. Dysfunction in the frontal lobes can result in a variety of deficits including distractibility and perseveration, social irresponsibility, lack of initiation, impulsivity, and disinhibition (Chudasama & Robbins, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 71–82.

    Article  PubMed  Google Scholar 

  • Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20(1), 385–406.

    Article  PubMed  Google Scholar 

  • Ardila, A. (2008). On the evolutionary origins of executive functions. Brain and Cognition, 68(1), 92–99.

    Article  PubMed  Google Scholar 

  • Arnsten, A. F. T., & Bao-Ming, L. (2005). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57(11), 1377–1384.

    Article  PubMed  Google Scholar 

  • Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 47–89). Salt Lake City, UT: Academic.

    Google Scholar 

  • Barricka, T. R., Mackayb, C. E., Primac, S., Maesd, F., Vandermeulend, D., Crowb, T. J., et al. (2005). Automatic analysis of cerebral asymmetry: An exploratory study of the relationship between brain torque and planum temporale asymmetry. NeuroImage, 24, 678–691.

    Article  Google Scholar 

  • Baumeister, R. F., Schmeichel, B. J., & Vohs, K. D. (2007). Self-regulation and the executive function: The self as controlling agent. In A. Kruglanski & E. T. Higgins (Eds.), Social psychology: Handbook of basic principles (2nd ed., pp. 516–539). New York: Guilford Press.

    Google Scholar 

  • Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3), 296–312.

    Article  PubMed  Google Scholar 

  • Blinkov, S. M., & Glezer, I. I. (1968). Das Zentralnervensystem in Zahlen und Tabellen. Jena: Fischer.

    Google Scholar 

  • Blumenfeld, H. (2010). Neuroanatomy through clinical cases (2nd ed.). Sunderland, MA: Sinaeur Associates.

    Google Scholar 

  • Bonin, G. V. (1950). Essay on the cerebral cortex. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26(2), 571–593.

    Article  PubMed  Google Scholar 

  • Brocki, K. C., Fan, J., & Fossella, J. (2008). Placing neuroanatomical models of executive function in a developmental context: Imaging and imaging-genetic strategies. In D. W. Phaff & B. L. Kieffer (Eds.), Molecular and biophysical mechanisms of arousal, alertness, and attention (pp. 246–255). Boston, MA: Blackwell Publishing.

    Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshinrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. In J. M. Fuster (Ed.), The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott–Raven.

    Google Scholar 

  • Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 887–899.

    Article  PubMed  Google Scholar 

  • Burgess, P. W., Simons, J. S., Dumontheil, I., & Gilbert, S. J. (2005). The gateway hypothesis of rostral prefrontal cortex (area 10) function. In J. Duncan, L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control, and age (pp. 217–248). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Christoff, K., & Keramatian, K. (2007). Abstraction of mental representations: Theoretical considerations and neuroscientific evidence. In S. A. Bunge & J. D. Wallis (Eds.), Perspectives on rule-guide behavior (pp. 107–126). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Chudasama, Y. (2011). Animal models of prefrontal prefrontal-executive function. Behavioral Neuroscience, 125(3), 327–343.

    Article  PubMed  Google Scholar 

  • Chudasama, Y., & Robbins, T. W. (2006). Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biological Psychology, 73(1), 19–38.

    Article  PubMed  Google Scholar 

  • Clarke, H. F., Dalley, J. W., Crofts, H. S., Robbins, T. W., & Roberts, A. C. (2004). Cognitive inflexibility after prefrontal serotonin depletion. Science, 304(5672), 878–880.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133.

    Article  PubMed  Google Scholar 

  • Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 12(1), 31–40.

    Google Scholar 

  • Crone, E. A., & Westenberg, P. M. (2009). A brain-based account of developmental changes in social decision-making. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 378–398). New York: Guilford Press.

    Google Scholar 

  • Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 1413–1420.

    Article  PubMed  Google Scholar 

  • Damasio, A., Anderson, S. W., & Tranel, D. (2011). The frontal lobes. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (5th ed., pp. 417–465). New York: Oxford University Press.

    Google Scholar 

  • Delis, D. C., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan executive function system. San Antonio, TX: Psychological Corporation.

    Google Scholar 

  • Diamond, A. (2006). The early development of executive functions. In E. Bialystok & F. I. M. Craik (Eds.), Lifespan cognition: Mechanisms of change. New York: Oxford University Press.

    Google Scholar 

  • Diamond, A. (2011). Biological and social influences on cognitive control processes dependent on prefrontal cortex. In O. Braddick, J. Atkinson, & G. Innocenti (Eds.), Progress in brain research (Vol. 189, pp. 319–340). Burlington: Academic.

    Google Scholar 

  • Divac, I., & Oberg, R. (1992). Subcortical mechanisms in cognition. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 42–60). New York: Oxford University Press.

    Google Scholar 

  • Filley, C. M. (2010). Chapter 35: The frontal lobes. In M. J. Aminoff, F. Boller, & D. F. Swaab (Eds.), Handbook of Clinical Neurology (pp. 557–70). New York: Elsevier.

    Google Scholar 

  • Fransson, P., Skiöld, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., et al. (2007). Resting-state networks in the infant brain. Proceedings of the National Academy of Sciences, 104(39), 15531–15536.

    Article  Google Scholar 

  • Freeman, W., & Watts, J. (1941). The frontal lobes and consciousness of the self. Psychosomatic Medicine, 3(2), 111–119.

    Google Scholar 

  • Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia, PA: Lippincott-Raven.

    Google Scholar 

  • Fuster, J. M. (2001). The prefrontal cortex—An update: Time is of the essence. Neuron, 30(2), 319–333.

    Article  PubMed  Google Scholar 

  • Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279(5348), 220–222.

    Article  PubMed  Google Scholar 

  • Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134(1), 31–60.

    Article  PubMed  Google Scholar 

  • Gioia, G., Isquith, P., Guy, S., & Kenworthy, L. (1996). Behavior rating inventory of executive function. Lutz, FL: Psychological Assessment Resources.

    Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.

    Article  PubMed  Google Scholar 

  • Gold, A. L., Shin, L. M., Orr, S. P., Carson, M. A., Rauch, S. L., Macklin, M. L., et al. (2011). Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychological Medicine, 41(12), 2563–2572.

    Article  PubMed  Google Scholar 

  • Gold, J. M., Berman, K. F., Randolph, C., Goldberg, E., & Weinberger, D. R. (1996). PET validation of a novel prefrontal task: Delayed response alteration. Neuropsychology, 10, 3–10.

    Google Scholar 

  • Goldberg, E. (2009). The new executive brain: Frontal lobes in a complex world. New York, NY: Oxford University Press.

    Google Scholar 

  • Goldberg, E., & Costa, L. D. (1981). Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14, 144–173.

    Article  PubMed  Google Scholar 

  • Goldstein, S., Naglieri, J. A., Princiotta, D., & Otero, T. M. (2013). Introduction: A history of executive functioning. In S. Goldstein & J. A. Naglieri (Eds.), Handbook of executive functioning. New York, NY: Springer.

    Google Scholar 

  • Greene, C. M., Braet, W., Johnson, K. A., & Bellgrove, M. (2008). Imaging the genetics of executive function. Biological Psychology, 79(1), 30–42.

    Article  PubMed  Google Scholar 

  • Gyurak, A., Goodkind, M. S., Madan, A., Kramer, J. H., Miller, B. L., & Levenson, R. W. (2009). Do tests of executive functioning predict ability to down regulate emotions spontaneously and when instructed to suppress? Cognitive, Affective, & Behavioral Neuroscience, 9(2), 144–152.

    Article  Google Scholar 

  • Hooper, C. J., Luciana, M., Conklin, H. M., & Yarger, R. S. (2004). Adolescents’ performance on the development of decision-making and ventromedial prefrontal cortex. Developmental Psychology, 40(6), 1148–1158.

    Article  PubMed  Google Scholar 

  • Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 2017–2036.

    Article  PubMed  Google Scholar 

  • Hunter, S. J., Edidin, J. P., & Hinkle, C. D. (2012). The developmental neuropsychology of executive functions. In S. J. Hunter & E. P. Sparrow (Eds.), Executive function and dysfunction (pp. 17–36). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., et al. (2001). Regional dendritic and spine variation in human cerebral cortex: A quantitative golgi study. Cerebral Cortex, 11(6), 558–571.

    Article  PubMed  Google Scholar 

  • Johnson, M. H., & de Haan, M. (2011). Developmental cognitive neuroscience: An introduction (3rd ed.). Malden, MA: Wiley-Blackwell.

    Google Scholar 

  • Kates, W. R., Frederikse, M., Mostofsky, S. H., Folley, B. S., Cooper, K., Mazur-Hopkins, P., et al. (2002). MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Research, 116(1–2), 63–81.

    Article  PubMed  Google Scholar 

  • Kayser, A. S., Allen, D. C., Navarro-Cebrian, A., Mitchell, J. M., & Fields, H. L. (2012). Dopamine, corticostriatal connectivity, and intertemporal choice. The Journal of Neuroscience, 32(27), 9402–9409.

    Article  PubMed  Google Scholar 

  • Killgore, C. A., Oki, M., & Yurgelun-Todd, D. A. (2001). Sex-specific developmental changes in amygdala responses to affective faces. Neuroreport, 12(2), 427–433.

    Article  PubMed  Google Scholar 

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.

    Article  PubMed  Google Scholar 

  • Kovács, A. M., & Mehler, J. (2009). Cognitive gains in 7-month-old bilingual infants. Proceedings of the National Academy of Sciences of the United States of America, 106, 6556–6560.

    Article  PubMed  Google Scholar 

  • Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment. New York, NY: Springer.

    Book  Google Scholar 

  • Leon-Carrion, J., Garcia-Orza, J., & Perez-Santamaria, F. J. (2004). The development of the inhibitory component of the executive functions in children and adolescents. The International Journal of Neuroscience, 114(10), 1291–1311.

    Article  PubMed  Google Scholar 

  • Levine, B., & Craik, F. I. (2012). Unifying clinical, experimental, and neuroimaging studies of the human frontal lobes. In B. Levine & F. I. Craik (Eds.), Mind and the frontal lobes: Cognition, behavior, and brain imaging (pp. 3–15). New York, NY: Oxford University Press.

    Google Scholar 

  • Lezak, M. D., Howieson, D. B., Loring, D. W., Hannay, H. J., & Fischer, J. S. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Luciana, M., Conklin, H. M., Cooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76(3), 697–712.

    Article  PubMed  Google Scholar 

  • Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75(5), 1357–1372.

    Article  PubMed  Google Scholar 

  • Mac Master, F. P., Keshavan, M. S., Dick, E. L., & Rosenberg, D. R. (1999). Corpus callosal signal intensity in treatment-naive pediatric obsessive compulsive disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(4), 601–612.

    Article  Google Scholar 

  • McCloskey, G., & Perkins, L. A. (2013). Essentials of executive functions assessment. Hoboken, NJ: Wiley.

    Google Scholar 

  • McCloskey, G., Perkins, L. A., & Van Divner, B. R. (2009). Assessment and intervention for executive function difficulties. New York: Routledge.

    Google Scholar 

  • McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107.

    Article  PubMed  Google Scholar 

  • Merriam, E. P., Thase, M. E., Haas, G. L., Keshavan, M. S., & Sweeney, J. A. (1999). Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. The American Journal of Psychiatry, 156(5), 780–782.

    PubMed  Google Scholar 

  • Miller, E. K., & Wallis, J. D. (2009). Executive function and higher-order cognition: Definition and neural substrates. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 4, pp. 99–104). Oxford: Academic.

    Chapter  Google Scholar 

  • Neuromodulator. (2012). Encyclopædia Britannica. Retrieved from http://www.britannica.com/EBchecked/topic/410660/neuromodulator

  • Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49(12), 975–982.

    Article  PubMed  Google Scholar 

  • Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1998). Neuropsychological deficits in obsessive-compulsive disorder: A comparison with unipolar depression, panic disorder, and normal controls. Archives of General Psychiatry, 55(5), 415–423.

    Article  PubMed  Google Scholar 

  • Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5(3), 184–194.

    Article  PubMed  Google Scholar 

  • Risberg, J. (2006). Evolutionary aspects on the frontal lobes. In J. Risberg & J. Grafman (Eds.), The frontal lobes: Development, function, and pathology. New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Robbins, T. W., & Roberts, A. C. (2007). Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cerebral Cortex, 17(Suppl. 1), 151–160.

    Article  Google Scholar 

  • Roca, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., Antoun, N., et al. (2010). Executive function and fluid intelligence after frontal lobe lesions. Brain, 133(Pt 1), 234–247.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29.

    Article  PubMed  Google Scholar 

  • Rucklidge, J. J., & Tannock, R. (2002). Neuropsychological profiles of adolescents with ADHD: Effects of reading difficulties and gender. Journal of Child Psychology and Psychiatry, 43(8), 988–1003.

    Article  PubMed  Google Scholar 

  • Schenker, N. M., Desgouttes, A. M., & Semendeferi, K. (2005). Neural connectivity and cortical substrates of cognition in hominoids. Journal of Human Evolution, 49(5), 547–569.

    Article  PubMed  Google Scholar 

  • Schoenemann, P. T., Sheehan, M. J., & Glotzer, D. L. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8(2), 242–252.

    Article  PubMed  Google Scholar 

  • Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (1998). Limbic frontal cortex in hominoids: A comparative study of area 13. American Journal of Physical Anthropology, 106(2), 129–155.

    Article  PubMed  Google Scholar 

  • Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: A comparative study of area 10. American Journal of Physical Anthropology, 114(3), 224–241.

    Article  PubMed  Google Scholar 

  • Semendeferi, K., & Damasio, H. (2000). The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. Journal of Human Evolution, 38(2), 317–332.

    Article  PubMed  Google Scholar 

  • Siddiqui, S. V., Chatterjee, U., Kumar, D., Siddiqui, A., & Goyal, N. (2008). Neuropsychology of prefrontal cortex. Indian Journal of Psychiatry, 50(3), 202–208.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Delis, D., Stiles, J., & Jernigan, T. L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: A structural MRI study. Journal of International Neuropsychological Society, 7, 312–322.

    Article  Google Scholar 

  • Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2(10), 859–861.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during post-adolescent brain maturation. The Journal of Neuroscience, 21(22), 8819–8829.

    PubMed  Google Scholar 

  • Stevens, J., Quittner, A. L., Zuckerman, J. B., & Moore, S. (2002). Behavioral inhibition, self-regulation of motivation, and working memory in children with attention deficit hyperactivity disorder. Developmental Neuropsychology, 21(2), 117–139.

    Article  PubMed  Google Scholar 

  • Stuss, D. T. (1991). Self, awareness and the frontal lobes: A neuropsychological perspective. In J. Strauss & G. R. Goethals (Eds.), The self: Interdisciplinary approaches (pp. 255–278). New York: Springer.

    Chapter  Google Scholar 

  • Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive system? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 901–915.

    Article  PubMed  Google Scholar 

  • Tarullo, A. R., Milner, S., & Gunmar, M. R. (2011). Inhibition and exuberance in preschool classrooms: Associations with peer social experiences and changes in cortisol across the preschool years. Developmental Psychology, 47(5), 1374–1388.

    Article  PubMed  Google Scholar 

  • Teffer, K., & Semendeferi, K. (2012). Human prefrontal cortex: Evolution, development, and pathology. In M. A. Hofman & D. Falk (Eds.), Progress in brain research (pp. 191–218). Amsterdam: Elsevier.

    Google Scholar 

  • Van Snellenberg, J. X., & Wager, T. D. (2009). Cognitive and motivational functions of the human prefrontal cortex. In A. L. Christensen, D. Bougakov, & E. Goldberg (Eds.), Luria’s legacy in the 21st century (pp. 30–61). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10(3), 376–384.

    Article  PubMed  Google Scholar 

  • Wang, M., Vijayraghavan, S., & Goldman-Rakic, P. S. (2004). Selective D2 receptor actions on the functional circuitry of working memory. Science, 303(5659), 853–856.

    Article  PubMed  Google Scholar 

  • Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43(2), 114–124.

    Article  PubMed  Google Scholar 

  • Welsh, M. C., & Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology, 4(3), 199–230.

    Article  Google Scholar 

  • Yakovlev, P. A., & Lecours, I. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Otero, T.M., Barker, L.A. (2014). The Frontal Lobes and Executive Functioning. In: Goldstein, S., Naglieri, J. (eds) Handbook of Executive Functioning. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8106-5_3

Download citation

Publish with us

Policies and ethics