Skip to main content

Introduction to Ageing of the Adaptive Immune System

  • Chapter
  • First Online:
Immunosenescence

Abstract

Like other somatic tissues and organs, the vertebrate immune system manifests age-associated alterations to its components and their functions. Unlike in invertebrates, in addition to the innate arm, vertebrates also possess adaptive immunity mediated by both cellular and humoral components. This chapter reviews data on age-associated alterations to adaptive immunity specifically in humans, mostly originating from cross-sectional studies (i.e., comparing young with old people). We summarise what is known about the effects of age on the different components of the adaptive immune system, particularly T cells, which appear most obviously different in the elderly. We consider the serious limitations inherent in cross-sectional studies, and discuss the crucial requirement to perform longitudinal studies (i.e., following the same individuals over time). Despite the logistical and financial constraints, longitudinal follow-up has provided the most biologically meaningful information about which of the many biomarkers apparently changing with age are actually relevant to medical parameters and for late-life health and longevity, and which, in contrast, may change with age but without clinical relevance. Given the lack of consistent data currently available, as a result of performing studies on heterogeneous populations using different analytical techniques, we emphasize the necessity for more numerous, more extensive and more detailed studies including assessments of the impact of psychosocial, nutritional and other thus-far rarely considered parameters on immunological and other biomarkers in longitudinal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL et al (2006) Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107:2453–2460

    Article  PubMed  CAS  Google Scholar 

  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D et al (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci USA 107:5465–5470

    Article  PubMed  CAS  Google Scholar 

  • Breitbart E, Wang X, Leka LS, Dallal GE, Meydani SN, Stollar BD (2002) Altered memory B-cell homeostasis in human aging. J Gerontol A Biol Sci Med Sci 57:B304–311

    Article  Google Scholar 

  • Caruso C, Buffa S, Candore G, Colonna-Romano G, Dunn-Walters D, Kipling D et al (2009) Mechanisms of immunosenescence. Immun Ageing 6:10.

    Article  PubMed  Google Scholar 

  • Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB (2009) Vaccination in the elderly: an immunological perspective. Trends Immunol 30:351–359

    Article  PubMed  Google Scholar 

  • Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L et al (2009) Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 155:423–432

    Article  PubMed  CAS  Google Scholar 

  • Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–5561

    Article  PubMed  CAS  Google Scholar 

  • Chong Y, Ikematsu H, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S et al (2005) CD27( + ) (memory) B cell decrease and apoptosis-resistant CD27( - ) (naïve) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol 17:383–390

    Article  PubMed  CAS  Google Scholar 

  • Colonna-Romano G, Bulati M, Aquino A, Scialabba G, Candore G, Lio D et al (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev 124:389–393

    Article  PubMed  CAS  Google Scholar 

  • Compston JE (2002) Bone marrow and bone: a functional unit. J Endocrinol 173:387–394

    Article  PubMed  CAS  Google Scholar 

  • Cooper MD, Herrin BR (2010) How did our complex immune system evolve? Nat Rev Immunol 10:2–3

    Article  PubMed  CAS  Google Scholar 

  • Derhovanessian E, Larbi A, Pawelec G (2009) Biomarkers of human immunosenescence: Impact of cytomegalovirus infection. Curr Opin Immunol 21:440–445

    Article  PubMed  CAS  Google Scholar 

  • Derhovanessian E, Maier AB, Beck R, Jahn G, Hahnel K, Slagboom PE et al (2010) Hallmark features of immunosenescence are absent in familial longevity. J Immunol 185:4618–4624

    Article  PubMed  CAS  Google Scholar 

  • Derhovanessian E, Solana R, Larbi A, Pawelec G (2008b) Immunity, ageing and cancer. Immunity Ageing 5:11.

    Article  Google Scholar 

  • Dykstra B, de Haan G (2008) Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 331:91–101

    Article  PubMed  Google Scholar 

  • Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunological Rev 205:147–157

    Article  CAS  Google Scholar 

  • Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL et al (2008) Aging down-regulates the transcription factor E2 A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol 180:5283–5290

    PubMed  CAS  Google Scholar 

  • Frasca D, Riley RL, Blomberg BB (2005) Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol 17:378–384

    Article  PubMed  CAS  Google Scholar 

  • Fulop T, Pawelec G, Castle S, Loeb M (2009) Immunosenescence and vaccination in nursing home residents. [Review]. Clin Infect Dis(An official publication of the Infectious Diseases Society of America) 48:443–448

    Article  PubMed  Google Scholar 

  • Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475

    Article  PubMed  CAS  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al (1999) The immunological synapse: A molecular machine controlling T cell activation. Science 285:221–227

    Article  PubMed  CAS  Google Scholar 

  • Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL (2008) Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res 68:6341–6349

    Article  PubMed  CAS  Google Scholar 

  • Grubeck-Loebenstein B, Della Bella S, Iorio AM, Michel JP, Pawelec G, Solana R (2009) Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res 21:201–209

    PubMed  CAS  Google Scholar 

  • Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211:144–156

    Article  PubMed  CAS  Google Scholar 

  • Hakim FT, Gress RE (2005) Reconstitution of the lymphocyte compartment after lymphocyte depletion: A key issue in clinical immunology. Eur J Immunol 35:3099–3102

    Article  PubMed  CAS  Google Scholar 

  • Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C et al (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest 115:930–939

    PubMed  CAS  Google Scholar 

  • Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:414–417

    Article  PubMed  CAS  Google Scholar 

  • Hock H (2010) Some hematopoietic stem cells are more equal than others. J Exp Med 207:1127–1130

    Article  PubMed  CAS  Google Scholar 

  • Joshi SR, Shaw AC, Quagliarello VJ (2009) Pandemic influenza H1N1 2009, innate immunity, and the impact of immunosenescence on influenza vaccine. Yale J Biol Med 82:143–151

    PubMed  CAS  Google Scholar 

  • Lang PO, Govind S, Michel JP, Aspinall R, Mitchell WA (2011) Immunosenescence: Implications for vaccination programmes in adults. Maturitas 68:322–330

    Article  PubMed  Google Scholar 

  • Lanier LL, Sun JC (2009) Do the terms innate and adaptive immunity create conceptual barriers? Nat Rev Immunol 9:302–303

    Article  PubMed  CAS  Google Scholar 

  • Larbi A, Grenier A, Frisch F, Douziech N, Fortin C, Carpentier AC et al (2005) Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T cell activation in humans. Am J Clin Nutr 82:949–956

    PubMed  CAS  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    Article  PubMed  CAS  Google Scholar 

  • Litman GW, Rast JP, Fugmann SD (2010) The origins of vertebrate adaptive immunity. Nat Rev Immunol 10:543–553

    Article  PubMed  CAS  Google Scholar 

  • Lung TL, Saurwein-Teissl M, Parson W, Schonitzer D, Grubeck-Loebenstein B (2000) Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 18:1606–1612

    Article  PubMed  CAS  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van Den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30:366–373

    Article  PubMed  CAS  Google Scholar 

  • McElhaney JE, Effros RB (2009) Immunosenescence: What does it mean to health outcomes in older adults? Curr Opinion Immunol 21 418–424

    Article  CAS  Google Scholar 

  • Mysliwska J, Trzonkowski P, Szmit E, Brydak LB, Machala M, Mysliwski A (2004) Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp Gerontol 39:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452

    PubMed  CAS  Google Scholar 

  • Okada R, Kondo T, Matsuki F, Takata H, Takiguchi M (2008) Phenotypic classification of human CD4+ T cell subsets and their differentiation. International Immunol 20:1189–1199

    Article  CAS  Google Scholar 

  • Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121:187–201

    Article  PubMed  CAS  Google Scholar 

  • Ongradi J, Stercz B, Kovesdi V, Vertes L (2009) Immunosenescence and vaccination of the elderly II. New strategies to restore age-related immune impairment. Acta Microbiol Immunol Hung 56:301–312

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Derhovanessian E (2010) Role of CMV in immune senescence. Virus Res 157:175–179

    Google Scholar 

  • Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Ferguson FG, Wikby A (2001) The SENIEUR protocol after 16 years. Mech Ageing Dev 122:132–134

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Koch S, Franceschi C, Wikby A (2006) Human immunosenescence: does it have an infectious component? Ann N Y Acad Sci 1067:56–65

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Larbi A (2008) Immunity and ageing in man: Annual Review 2006/2007. Exp Gerontol 43:34–38

    PubMed  CAS  Google Scholar 

  • Pawelec, G, Larbi A, Derhovanessian E (2010) Senescence of the human immune system. J Comp Pathol 142(Suppl 1):S39–44

    Google Scholar 

  • Rivnay B, Bergman S, Shinitzky M, Globerson A (1980) Correlations between membrane viscosity, serum cholesterol, lymphocyte activation and aging in man. Mech Ageing Dev 12:119–126

    Article  PubMed  CAS  Google Scholar 

  • Rollinghoff M (1997) Immunity, components of the immune system and immune response. Biologicals 25:165–168

    Article  PubMed  CAS  Google Scholar 

  • Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM et al (2007) Four functionally distinct populations of human effector-memory CD8 + T lymphocytes. J Immunol 178:4112–4119

    PubMed  CAS  Google Scholar 

  • Russell DG, Vanderven BC, Glennie S, Mwandumba H, Heyderman RS (2009) The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9:594–600

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Langenkamp A, Geginat J, Lanzavecchia A (2000) Functional subsets of memory T cells identified by CCR7 expression. Curr Top Microbiol Immunol 251:167–171

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  • Sanz I, Wei C, Lee FE, Anolik J (2008) Phenotypic and functional heterogeneity of human memory B cells. Sem Immunol 20:67–82

    Article  CAS  Google Scholar 

  • Savino W (2007) Neuroendocrine control of T cell development in mammals: role of growth hormone in modulating thymocyte migration. Exp Physiol 92(5):813–817

    Article  PubMed  CAS  Google Scholar 

  • Schwarz BA, Bhandoola A (2006) Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev 209:47–57

    Article  PubMed  Google Scholar 

  • Shanley DP, Aw D, Manley NR, Palmer DB (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30:374–381

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell J Immunol 175:3262–3267

    Google Scholar 

  • Strindhall J, Nilsson BO, Lofgren S, Ernerudh J, Pawelec G, Johansson B et al (2007) No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42:753–761

    Article  PubMed  CAS  Google Scholar 

  • Targonski PV, Jacobson RM, Poland GA (2007) Immunosenescence: role and measurement in influenza vaccine response among the elderly. Vaccine 25:3066–3069

    Article  PubMed  CAS  Google Scholar 

  • Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    Article  PubMed  CAS  Google Scholar 

  • van Duin D, Allore HG, Mohanty S, Ginter S, Newman FK, Belshe RB et al (2007) Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J Infect Dis 195:1590–1597

    Article  PubMed  Google Scholar 

  • Veneri D, Ortolani R, Franchini M, Tridente G, Pizzolo G, Vella A (2009) Expression of CD27 and CD23 on peripheral blood B lymphocytes in humans of different ages. Blood Transfus 7:29–34

    PubMed  Google Scholar 

  • Vezys V, Yates A, Casey KA, Lanier G, Ahmed R, Antia R et al (2009) Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457:196–199

    Article  PubMed  CAS  Google Scholar 

  • Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130:46–53

    Article  PubMed  CAS  Google Scholar 

  • Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24:495–499

    Article  PubMed  CAS  Google Scholar 

  • Weng NP, Granger L, Hodes RJ (1997a) Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci USA 94:10827–10832

    Article  CAS  Google Scholar 

  • Weng NP, Palmer LD, Levine BL, Lane HC, June CH, Hodes RJ (1997b) Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev 160:43–54

    Article  CAS  Google Scholar 

  • Wetzel SA, McKeithan TW, Parker DC (2002) Live-cell dynamics and the role of costimulation in immunological synapse formation. J Immunol 169:6092–6101

    PubMed  CAS  Google Scholar 

  • Wikby A, Johansson B, Ferguson F, Olsson J (1994) Age-related changes in immune parameters in a very old population of Swedish people: a longitudinal study. Exp Gerontol 29:531–541

    Article  PubMed  CAS  Google Scholar 

  • Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37:445–453

    Article  PubMed  CAS  Google Scholar 

  • Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102:187–198

    Article  PubMed  CAS  Google Scholar 

  • Wikby A, Nilsson BO, Forsey R, Thompson J, Strindhall J, Lofgren S et al (2006). The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 127:695–704

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD et al (2008) Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455:532–536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

LM and GP cooperate in the BMBF-funded (01UW0808) Berlin Ageing Study II. GP was supported by the European Union-funded Network of Excellence LifeSpan (FP6 036894), the Large Integrated Project IDEAL (FP7 259679), the BMBF project GerontoShield, and by the Deutsche Forschungsgemeinschaft (DFG-PA 361/14-1, DFG-PA 361/11-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Pawelec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Müller, L., Pawelec, G. (2013). Introduction to Ageing of the Adaptive Immune System. In: Bosch, J., Phillips, A., Lord, J. (eds) Immunosenescence. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4776-4_2

Download citation

Publish with us

Policies and ethics