Skip to main content

Neural Correlates of Auditory Object Perception

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

As you sit in front of this book, reading these words, pause for a moment, listen, and ask yourself: What do I hear? Perhaps you hear some conversations going on in the background, some devices making noises of various kinds (an almost omnipresent feature of the modern world). Or perhaps you are in an unusually quiet place, and there is effectively nothing to hear. Almost certain is that you would not describe your auditory experience as one of oscillating air pressure in your ear canals that gently wiggle your ear drums. Yet strictly speaking, on the surface of it, that is all there ever is to “hearing.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25, 189–220.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Yosef, O., & Nelken, I. (2007). The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Frontiers in Computational Neuroscience, 1(3), doi: 10.3389/neuro.10/003.2007.

    Google Scholar 

  • Bizley, J. K., Walker, K. M. M., Silverman, B. W., King, A. J., & Schnupp, J. W. H. (2009). Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. Journal of Neuroscience, 29(7), 2064–2075.

    Article  PubMed  CAS  Google Scholar 

  • Bleeck, S., Ingham, N. J., Verhey, J. L., & Winter, I M. (2008). Rebound depolarization in single units of the ventral cochlear nucleus: A contribution to grouping by common onset. Neuroscience, 154(1), 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., & Movshon, J. A. (2009). A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13(1), 87–100.

    Article  Google Scholar 

  • Brugge, J. F., & Merzenich, M. M. (1973). Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. Journal of Neurophysiology, 36(6), 1138–1158.

    PubMed  CAS  Google Scholar 

  • Chechik, G., Anderson, M. J., Bar-Yosef, O., Young, E. D., Tishby, N., & Nelken, I. (2006). Reduction of information redundancy in the ascending auditory pathway. Neuron, 51(3), 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. J., & Sutherland, N.S. (1984). Grouping frequency components of vowels: When is a harmonic not a harmonic? Quarterly Journal of Experimental Psychology Section A, 36(2), 193–208.

    Article  Google Scholar 

  • Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4(8), 2051–2062.

    PubMed  CAS  Google Scholar 

  • Eggermont, J. J. (1995). Representation of a voice onset time continuum in primary auditory cortex of the cat. Journal of the Acoustical Society of America, 98(2 Pt 1), 911–920.

    Article  PubMed  CAS  Google Scholar 

  • Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61, 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, J. L., & Villa, A. E. P. (2006). Learning of auditory equivalence classes for vowels by rats. Behavioural Processes, 73(3), 348–359.

    Article  PubMed  Google Scholar 

  • Firzlaff, U., Schuchmann, M., Grunwald, J. E., Schuller, G., & Wiegrebe, L. (2007). Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biology, 5(5), e100.

    Article  PubMed  Google Scholar 

  • Fishman, Y. I., Arezzo, J. C., & Steinschneider, M. (2004). Auditory stream segregation in monkey auditory cortex: Effects of frequency separation, presentation rate, and tone duration. Journal of the Acoustical Society of America, 116(3), 1656–1670.

    Article  PubMed  Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). A comparison of primate prefrontal and inferior temporal cortices during visual categorization. Journal of Neuroscience, 23(12), 5235–5246.

    PubMed  CAS  Google Scholar 

  • Geissler, D. B., & Ehret, G. (2004). Auditory perception vs. recognition: Representation of complex communication sounds in the mouse auditory cortical fields. European Journal of Neuroscience, 19(4), 1027–1040.

    Article  PubMed  Google Scholar 

  • Ghazanfar, A. A., & Santos, L. R. (2004). Primate brains in the wild: The sensory bases for social interactions. Nature Reviews Neuroscience, 5, 603–616.

    Article  PubMed  CAS  Google Scholar 

  • Gifford, G. W., MacLean, K. A., Hauser, M. D., & Cohen, Y. E. (2005). The neurophysiology of functionally meaningful categories: Macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. Journal of Cognitive Neuroscience, 9, 1471–1482.

    Article  Google Scholar 

  • Gourévitch, B., & Eggermont, J. J. (2007). Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. Journal of Neurophysiology, 97(1), 144–158.

    Article  PubMed  Google Scholar 

  • Griffiths, T. D., Warren, J. D., Scott, S. K., Nelken, I., & King, A. J. (2004). Cortical processing of complex sound: A way forward. Trends in Neurosciences, 27(4), 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Guenther, F. H., & Gjaja, M. N. (1996). The perceptual magnet effect as an emergent property of neural map formation. Journal of the Acoustical Society of America, 100(2Pt 1), 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y. K., Köver, H., Insanally, M. N., Semerdjian, J. H., & Bao, S (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, I. A., Stecker, G. C., Macpherson, E. A., & Middlebrooks, J. C. (2008). Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hearing Research, 240(1–2), 22–41.

    Article  PubMed  Google Scholar 

  • Histed, M. H., Pasupathy, A., & Miller, E. K. (2009). Learning substrates in the primate prefrontal cortex and striatum: Sustained activity related to successful actions. Neuron, 63(2), 244–253.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, S. D., & Roberts, B. (2006). Inhibitory influences on asynchrony as a cue for auditory segregation. Journal of Experimental Psychology, 32(5), 1231–1242.

    PubMed  Google Scholar 

  • Holt, L. L., Lotto, A. J., & Kluender, K. R. (2001). Influence of fundamental frequency on stop-consonant voicing perception: A case of learned covariation or auditory enhancement. Journal of the Acoustical Society of America, 109(2), 764–774.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.

    Article  PubMed  CAS  Google Scholar 

  • Kalatsky, V. A., Polley, D. B., Merzenich, M. M., Schreiner, C. E., & Stryker, M. P. (2005). Fine functional organization of auditory cortex revealed by Fourier optical imaging. Proceedings of the National Academy of Sciences of the USA, 102(37), 13325–13330.

    Article  CAS  Google Scholar 

  • Kluender, K., Diehl, R., & Killeen, P. (1987). Japanese quail can learn phonetic categories. Science, 237(4819), 1195–1197.

    Article  PubMed  CAS  Google Scholar 

  • Kluender, K. R., & Lotto, A. J. (1994). Effects of first formant onset frequency on [-voice] judgments result from auditory processes not specific to humans. Journal of the Acoustical Society of America, 95(2), 1044–1052.

    CAS  Google Scholar 

  • Kluender, K. R., Lotto, A. J., Holt, L. L., & Bloedel, S. L. (1998). Role of experience for language-specific functional mappings of vowel sounds. Journal of the Acoustical Society of America, 104(6), 3568–3582.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception & Psychophysics, 50(2), 93–107.

    Article  CAS  Google Scholar 

  • Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H., Russ, B. E., Orr, L. E., & Cohen, Y. E. (2009). Prefrontal activity predicts monkeys’ decisions during an auditory category task. Frontiers in Integrative Neuroscience, 3(16), 1–12.

    Google Scholar 

  • Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368.

    Article  PubMed  CAS  Google Scholar 

  • Loh, M., Pasupathy, A., Miller, E. K., & Deco, G. (2008). Neurodynamics of the prefrontal cortex during conditional visuomotor associations. Journal of Cognitive Neuroscience, 20(3), 421–431.

    Article  PubMed  Google Scholar 

  • Lomber, S. G., & Malhotra, S. (2008). Double dissociation of ’what’ and “where” processing in auditory cortex. Nature Neuroscience, 11(5), 609–616.

    Article  PubMed  CAS  Google Scholar 

  • Luczak, A., Barthó, P., Marguet, S. L., Buzsáki, G., & Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the USA, 104(1), 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Luczak, A., Barthó, P., & Harris, K. D. (2009). Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron, 62(3), 413–425.

    Article  PubMed  CAS  Google Scholar 

  • Mercado, E., Orduña, I., & Nowak, J. M. (2005). Auditory categorization of complex sounds by rats (Rattus norvegicus). Journal of Comparative Psychology, 119(1), 90–98.

    Article  PubMed  Google Scholar 

  • Micheyl, C., Tian, Biao, Carlyon, R. P., & Rauschecker, Josef P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks, J., Clock, A., Xu, L., & Green, D. (1994). A panoramic code for sound location by cortical neurons. Science, 264(5160), 842–844.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1424), 1123–1136.

    Article  Google Scholar 

  • Nassi, J. J., & Callaway, E. M. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10(5), 360.

    Article  PubMed  CAS  Google Scholar 

  • Nelken, I. (2008). Processing of complex sounds in the auditory system. Current Opinion in Neurobiology, 18(4), 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Nelken, I., Fishbach, A., Las, L., Ulanovsky, N., & Farkas, D. (2003). Primary auditory cortex of cats: Feature detection or something else. Biological Cybernetics, 89(5), 397–406.

    Article  PubMed  Google Scholar 

  • Nelken, I., Bizley, J. K., Nodal, F. R., Ahmed, B., Schnupp, J. W. H., & King, A. J. (2004). Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. Journal of Neurophysiology, 92(4), 2574–2588.

    Article  PubMed  Google Scholar 

  • Nelken, I., Chechik, G., Mrsic-Flogel, T. D., King, A. J., & Schnupp, J. W. H. (2005). Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. Journal of Computational Neuroscience, 19(2), 199–221.

    Article  PubMed  Google Scholar 

  • Ohl, F. W., Scheich, H., & Freeman, W. J. (2001). Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412(6848), 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Olveczky, B. P., & Gardner, T. J. (2011). A bird’s eye view of neural circuit formation. Current Opinion in Neurobiology, 21(1), 124–131.

    Article  PubMed  Google Scholar 

  • Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433(7028), 873–876.

    Article  PubMed  CAS  Google Scholar 

  • Poremba, A. (2003). Functional mapping of the primate auditory system. Science, 299(5606), 568–572.

    Article  PubMed  CAS  Google Scholar 

  • Pressnitzer, D., & Hupé, J.-M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16(13), 1351–1357.

    Article  PubMed  CAS  Google Scholar 

  • Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18(15), 1124–1128.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, B., & Holmes, S. D. (2006). Grouping and the pitch of a mistuned fundamental component: Effects of applying simultaneous multiple mistunings to the other harmonics. Hearing Research, 222(1–2), 79–88.

    Article  PubMed  Google Scholar 

  • Roberts, B., & Holmes, S. D. (2007). Contralateral influences of wideband inhibition on the effect of onset asynchrony as a cue for auditory grouping. Journal of the Acoustical Society of America, 121(6), 3655–3665.

    Article  PubMed  Google Scholar 

  • Romanski, L. M., & Averbeck, B. B. (2009). The primate cortical auditory system and neural representation of conspecific vocalizations. Annual Review of Neuroscience, 32, 315–346.

    Article  PubMed  CAS  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.

    Article  PubMed  CAS  Google Scholar 

  • Russ, B. E., Ackelson, A. L., Baker, A. E., & Cohen, Y. E. (2008). Coding of auditory-stimulus identity in the auditory non-spatial processing stream. Journal of Neurophysiology, 99(1), 87–95.

    Article  PubMed  Google Scholar 

  • Schnupp, J. W. H. (2008). Auditory neuroscience: Sound segregation in the brainstem. Current Biology, 18(16), 705–706.

    Article  Google Scholar 

  • Schnupp, J. W. H., Hall, T. M., Kokelaar, R. F., & Ahmed, B. (2006). Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. Journal of Neuroscience, 26(18), 4785–4795.

    Article  PubMed  CAS  Google Scholar 

  • Schnupp, J., Nelken, I., & King, A. (2010). Auditory neuroscience: Making sense of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Schouten, M. E., & van Hessen, A. J. (1992). Modeling phoneme perception. I: Categorical perception. Journal of the Acoustical Society of America, 92(4 Pt 1), 1841–1855.

    Article  PubMed  CAS  Google Scholar 

  • Shamma, S., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Sinnott, J. M., & Brown, C. H. (1997). Perception of the American English liquid /ra-la/ contrast by humans and monkeys. Journal of the Acoustical Society of America, 102(1), 588–602.

    Article  PubMed  CAS  Google Scholar 

  • Sinnott, J., Brown, C., & Borneman, M.A. (1998). Effects of syllable duration on stop-glide identification in syllable-initial and syllable-final position by humans and monkeys. Perception & Psychophysics, 60(6), 1032–1043.

    Article  CAS  Google Scholar 

  • Steinschneider, M., Fishman, Y. I., & Arezzo, J. C. (2003). Representation of the voice onset time (VOT) speech parameter in population responses within primary auditory cortex of the awake monkey. Journal of the Acoustical Society of America, 114(1), 307–321.

    Article  PubMed  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in Rhesus monkey auditory cortex. Science, 292(5515), 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Tovee, M. J., Rolls, E. T., & Azzopardi, P. (1994). Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. Journal of Neurophysiology, 72(3), 1049–1060.

    PubMed  CAS  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.

    Article  PubMed  CAS  Google Scholar 

  • van Noorden, L. (1975). Temporal coherence in the perception of tone sequences. Doctoral thesis, Technische Hogeschool Eindhoven.

    Google Scholar 

  • Walker, K. M. M., Ahmed, B., & Schnupp, J. W. H. (2008). Linking cortical spike pattern codes to auditory perception. Journal of Cognitive Neuroscience, 20(1), 135–152.

    Article  PubMed  Google Scholar 

  • Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W. H. Schnupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schnupp, J.W.H., Honey, C., Willmore, B.D.B. (2013). Neural Correlates of Auditory Object Perception. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_5

Download citation

Publish with us

Policies and ethics