Skip to main content

The Role of Auditory Cortex in Spatial Processing

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

  • 1662 Accesses

Abstract

One of the primary functions of the sensory nervous system is to determine and represent where stimuli originate from. This is critical for identifying predators and prey, as well as mate selection and attending objects of interest. Audition is one of the three primary senses that can provide some information about extrapersonal space, together with vision and olfaction. The latter two sensory systems define the range of spatial localization abilities, with olfactory spatial perception being extremely poor under most naturalistic conditions (Doty, 2001; Kauer & White, 2001), and visual spatial perception being very accurate (Westheimer, 1984; Shapley & Lennie, 1985). Auditory spatial perception is somewhere in between (Blauert, 1997), but holds a significant advantage over vision in that it is sensitive to all regions of extrapersonal space, not just the visual field, which is restricted to frontal space in most primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, S. M., Giguère, C., Consoli, A., & Papsin, B. C. (2000). The effect of aging on horizontal plane sound localization. The Journal of the Acoustical Society of America, 108, 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Altshuler, M. W., & Comalli, P. E. (1975). Effect of stimulus intensity and frequency on median horizontal plane sound localization. The Journal of Auditory Research, 15, 262–265.

    Google Scholar 

  • Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13, 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Beitel, R. E., & Kaas, J. H. (1993). Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of Neurophysiology, 70, 351–369.

    CAS  PubMed  Google Scholar 

  • Blauert, J. (1997). Spatial hearing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189.

    Article  CAS  PubMed  Google Scholar 

  • Brugge, J. F., Reale, R. A., & Hind, J. E. (1996). The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. The Journal of Neuroscience, 16, 4420–4437.

    CAS  PubMed  Google Scholar 

  • Cai, R., Guo, F., Zhang, J., Xu, J., Cui, Y., & Sun, X. (2009). Environmental enrichment improves behavioral performance and auditory spatial representations of primary auditory cortical ­neurons in rat. Neurobiology of Learning and Memory, 91, 366–376.

    Article  PubMed  Google Scholar 

  • Campbell, R. A., King, A. J., Nodal, F. R., Schnupp, J. W., Carlile, S., & Doubell, T. P. (2008). Virtual adult ears reveal the roles of acoustical factors and experience in auditory space map development. The Journal of Neuroscience, 28, 11557–11570.

    Article  CAS  PubMed  Google Scholar 

  • Casseday, J. H., & Neff, W. D. (1975). Auditory localization: Role of auditory pathways in brain stem of the cat. Journal of Neurophysiology, 38, 842–858.

    CAS  PubMed  Google Scholar 

  • Comalli, P. E., & Altshuler, M. W. (1976). Effect of stimulus intensity, frequency and unilateral hearing loss on sound localization. The Journal of Auditory Research, 16, 275–279.

    Google Scholar 

  • de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of Neuroscience, 27, 180–189.

    Article  CAS  PubMed  Google Scholar 

  • Doty, R. L. (2001). Olfaction. Annual Review of Psychology, 52, 423–452.

    Article  CAS  Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. The Journal of Neuroscience, 8, 2928–2937.

    CAS  PubMed  Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1993). Temporal factors and speech recognition performance in young and elderly listeners. Journal of Speech and Hearing Research, 36, 1276–1285.

    CAS  PubMed  Google Scholar 

  • Green, D. M., & Swets, J. A. (1974). Signal detection theory and psychophysics. Huntington, NY: Kreiger.

    Google Scholar 

  • Groh, J. M., Kelly, K. A., & Underhill, A. M. (2003). A monotonic code for sound azimuth in primate inferior colliculus. Journal of Cognitive Neuroscience, 15, 1217–1231.

    Article  PubMed  Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90, 983–1012.

    Article  CAS  PubMed  Google Scholar 

  • Hackett, T. A., Preuss, T. M., & Kaas, J. H. (2001). Architectonic identification of the core region in auditory cortex of macaques, chimpanzees and humans. The Journal of Comparative Neurology, 441, 197–22.

    Article  CAS  PubMed  Google Scholar 

  • Harrington, I. A., Stecker, G. C., Macpherson, E. A., & Middlebrooks, J. C. (2008). Spatial sensitivity of neurons in the anterior, posterior and primary fields of cat auditory cortex. Hearing Research, 240, 22–41.

    Article  PubMed  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (1990). Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. Journal of Neurophysiology, 64, 915–931.

    CAS  PubMed  Google Scholar 

  • Hofman, P. M., Van Riswick, J. G. A., & Van Opstal, A. J. (1998). Relearning sound localization with new ears. Nature Neuroscience, 1, 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Imig, T. J., Irons, W. A., & Samson, F. R. (1990). Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. Journal of Neurophysiology, 63, 1448–1466.

    CAS  PubMed  Google Scholar 

  • Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neuronal populations. Nature Neuroscience, 5, 690–696.

    Article  Google Scholar 

  • Jenkins, W. M., & Merzenich, M. M. (1984). Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology, 52, 819–847.

    CAS  PubMed  Google Scholar 

  • Juarez-Salinas, D. L, Engle, J. R., Navarro, X. O., & Recanzone, G. H. (2010). Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging. The Journal of Neuroscience, 30, 14795–14804.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97, 11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kacelnik, O., Nodal, F. R., Parsons, C. H., & King, A. J. (2006). Training-induced plasticity of auditory localization in adult mammals. PLOS Biology, 4, e71.

    Google Scholar 

  • Kauer, J. S., & White, J. (2001). Imaging and coding in the olfactory system. Annual Review of Neuroscience, 24, 963–979.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard, M. P., Pandya, P. K., Vazquez, J., Gehi, A., Schreiner, C. E., & Merzenich, M. M. (2001). Sensory input directs spatial and temporal plasticity in primary auditory cortex. Journal of Neurophysiology, 86, 326–338.

    CAS  PubMed  Google Scholar 

  • King, A. J., & Palmer, A. R. (1983). Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: Distribution and response properties. The Journal of Physiology, 342, 361–381.

    CAS  PubMed  Google Scholar 

  • King, A. J., Bajor, V. M., Bizley, J. K., Campbell, R. A. A., Nodal, F. R., Schultz, A. L., …Schnupp, J. W. H. (2007). Physiological and behavioral studies of spatial coding in the auditory cortex. Hearing Research, 229, 106–115.

    Article  PubMed  Google Scholar 

  • Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science, 200, 795–797.

    Article  CAS  PubMed  Google Scholar 

  • Kubo, T., Sakashita, T., Kusuki, M., Kyunai, K., Uneo, K., Hikawa, C., et al. (1998). Sound lateralization and speech discrimination in patients with sensorineural hearing loss. Acta Oto-Layngologica Supplementum, 538, 63–69.

    Article  CAS  Google Scholar 

  • Lee, C. C., & Middlebrooks, J. C. (2011). Auditory cortex spatial sensitivity sharpens during task performance. Nature Neuroscience, 14, 108–114.

    Article  CAS  PubMed  Google Scholar 

  • Lomber, S. G., & Malhotra, S. (2009). Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 11, 609–616.

    Article  Google Scholar 

  • Lovejoy, L. P., & Krauzlis, R. J. (2010). Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgements. Nature Neuroscience, 13, 261–266.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra, S., Hall, A. J., & Lomber, S. G. (2004). Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. Journal of Neurophysiology, 92, 1625–1643.

    Article  PubMed  Google Scholar 

  • Makous, J. C., & Middlebrooks, J. C. (1990). Two-dimensional sound localization by human listeners. The Journal of the Acoustical Society of America, 87, 2188–2200.

    Article  CAS  PubMed  Google Scholar 

  • Marrone, N., Mason, C. R., & Kidd, G., Jr. (2008). The effect of hearing loss and age of the benefit of spatial separation between multiple talkers in reverberant rooms. The Journal of the Acoustical Society of America, 124, 3064.

    Article  PubMed  Google Scholar 

  • Masterton, B., Jane, J. A., & Diamond, I. T. (1967). Role of brainstem auditory structures in sound localization. I. Trapezoid body, superior olive, and lateral lemniscus. Journal of Neurophysiology, 30, 341–359.

    CAS  PubMed  Google Scholar 

  • Mickey, B. J., & Middlebrooks, J. C. (2003). Representation of auditory space by cortical neurons in awake cats. The Journal of Neuroscience, 23, 8649–8663.

    CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Knudsen, E. I. (1984). A neural code for auditory space in the cat’s superior colliculus. The Journal of Neuroscience, 4, 2621–2634.

    CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., Clock, A. E., Xu, L., & Green, D. M. (1994). A panoramic code for sound location by cortical neurons. Science, 264, 842–844.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G. L., & Knudsen, E. I. (2001). Early auditory experience induces frequency-specific, adaptive plasticity in the forebrain gaze fields of the barn owl. Journal of Neurophysiology, 85, 2184–2194.

    CAS  PubMed  Google Scholar 

  • Miller, G. L., & Knudsen, E. I. (2003). Adaptive plasticity in the auditory thalamus of juvenile barn owls. The Journal of Neuroscience, 23, 1059–1065.

    CAS  PubMed  Google Scholar 

  • Miller, L. M., & Recanzone, G. H. (2010). Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy of Sciences of the USA, 106, 5931–5935.

    Article  Google Scholar 

  • Mrsic-Flogel, T. D., Schnupp, J. W. H., & King, A. J. (2003). Acoustic factors govern developmental sharpening of spatial tuning in the auditory cortex. Nature Neuroscience, 6, 981–988.

    Article  CAS  PubMed  Google Scholar 

  • Nodal, F. R., Kacelnik, O., Bajo, V. M., Bizley, J. K., Moore, D. R., & King, A. J. (2010). Lesions of the auditory cortex impair azimuthal sound localization and its recalibration in ferrets. Journal of Neurophysiology, 103, 1209–1225.

    Article  PubMed  Google Scholar 

  • Nummela, S. U., & Krauzlis, R. J. (2010). Inactivation of primate superior colliculus biases target choice for smooth pursuit, saccades, and button press responses. Journal of Neurophysiology, 104, 1538–1548.

    Article  PubMed  Google Scholar 

  • Phillips, S. L., Gordon-Salant, S., Fitzgibbons, P. J., & Yeni-Komshian, G. (2000). Frequency and temporal resolution in elderly listeners with good and poor word recognition. The Journal of Speech, Language and Hearing Research, 43, 217–228.

    CAS  Google Scholar 

  • Rajan, R., Aitkin, L. M., Irvine, D. R., & McKay, J. (1990a). Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. Journal of Neurophysiology, 64, 872–887.

    CAS  PubMed  Google Scholar 

  • Rajan, R., Aitkin, L. M., & Irvine, D. R. (1990b). Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. Journal of Neurophysiology, 64, 888–902.

    CAS  PubMed  Google Scholar 

  • Rauschecker, J. P. (1998). Parallel processing in the auditory cortex of primates. Audiology and Neuro-otology, 3, 86–103.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 97, 1180–11806.

    Article  Google Scholar 

  • Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in the macaque nonprimary auditory cortex. Science, 268, 111–114.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker, J. P., Tian, B., Pons, T., & Mishkin, M. (1997). Serial and parallel processing in rhesus monkey auditory cortex. The Journal of Comparative Neurology, 382, 89–103.

    Article  CAS  PubMed  Google Scholar 

  • 1–Reale, R. A., Jenison, R. L., & Brugge, J. F. (2003). Directional sensitivity of neurons in the primary auditory (AI) cortex: Effects of sound-source intensity level. Journal of Neurophysiology, 89, 1024–1038.

    Google Scholar 

  • Recanzone, G. H., & Beckerman, N. S. (2004). Effects of intensity and location on sound location discrimination in macaque monkeys. Hearing Research, 198, 116–124.

    Article  PubMed  Google Scholar 

  • Recanzone, G. H., & Sutter, M. L. (2008). Biological basis of audition. Annual Review of Psychology, 59, 119–142.

    Article  PubMed  Google Scholar 

  • Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67, 1031–1056.

    CAS  PubMed  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of Neuroscience, 13, 87–103.

    CAS  PubMed  Google Scholar 

  • Recanzone, G. H., Makhambra, S. D. D. R., & Guard, D. C. (1998). Comparison of relative and absolute sound localization ability in humans. The Journal of the Acoustical Society of America, 103, 1085–1097.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., Sutter, M. L., Beitel, R. E., & Merzenich, M. M. (1999). Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. The Journal of Comparative Neurology, 415, 460–481.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone, G. H., Guard, D. C., & Phan, M. L. (2000a). Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. Journal of Neurophysiology, 83, 2315–2331.

    CAS  PubMed  Google Scholar 

  • Recanzone, G. H., Guard, D. C., Phan, M. L., & Su, T. K. (2000b). Correlation between the activity of single auditory cortical neurons and sound localization behavior in the macaque monkey. Journal of Neurophysiology, 83, 2723–2739.

    CAS  PubMed  Google Scholar 

  • Romanski, L. M., & Averbeck, B. B. (2009). The primate cortical auditory system and neural representation of conspecific vocalizations. Annual Review of Neuroscience, 32, 315–346.

    Article  CAS  PubMed  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 12, 1131–1136.

    Article  Google Scholar 

  • 5–Sabin, A. T., Macpherson, E. A., & Middlebrooks, J. C. (2005). Human sound localization at near-threshold levels. Hearing Research, 199, 124–134.

    Google Scholar 

  • Shapley, R., & Lennie, P. (1985). Spatial frequency analysis in the visual system. Annual Review of Neuroscience, 8, 547–583.

    Article  CAS  PubMed  Google Scholar 

  • Smith, A. L., Parsons, C. H., Lanyon, R. G., Bizley, J. K., Akerman, C. J., Baker, G. E., et al. (2004). An investigation of the role of auditory cortex in sound localization using muscimol-releasing Elvax. European Journal of Neuroscience, 19, 3059–3072.

    Article  PubMed  Google Scholar 

  • Snell, K. B., & Frisina, D. R. (2000). Relationships among age-related differences in gap detection and word recognition. The Journal of the Acoustical Society of America, 107, 1615–1626.

    Article  CAS  PubMed  Google Scholar 

  • Snell, K. B., Mapes, F. M., Hickman, E. D., & Frisina, D. R. (2002). Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity. The Journal of the Acoustical Society of America, 112, 720–727.

    Article  PubMed  Google Scholar 

  • Stevens, S. S., & Newman, E. B. (1936). The localization of actual sources of sound. The American Journal of Psychology, 48, 297–306.

    Article  Google Scholar 

  • Su, T. I., & Recanzone, G. H. (2001). Differential effect of near-threshold stimulus intensities on sound localization performance in azimuth and elevation in normal human subjects. The Journal of the Association for Research in Otolaryngology, 2, 246–256.

    CAS  Google Scholar 

  • Thompson, G. C., & Cortez, A. M. (1983). The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behavioral Brain Research, 8, 211–216.

    Article  CAS  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292, 290–293.

    Article  CAS  PubMed  Google Scholar 

  • Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437.

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinions in Neurobiology, 4, 157–165.

    Article  CAS  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two visual cortical systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Van Wanrooij, M. M., & Van Opstal, A. J. (2005). Relearning sound localization with a new ear. The Journal of Neuroscience, 25, 5413–5424.

    Article  CAS  PubMed  Google Scholar 

  • Van Wanrooij, M. M., & Van Opstal, A. J. (2007). Sound localization under perturbed binaural hearing. Journal of Neurophysiology, 97, 715–726.

    Article  PubMed  Google Scholar 

  • Westheimer, G. (1984) Spatial vision. Annual Review of Psychology, 35, 201–226.

    CAS  Google Scholar 

  • Wightman, F. L., & Kistler, D. J. (1989a). Headphone simulation of free-field listening I: Stimulus synthesis. The Journal of the Acoustical Society of America, 85, 858–867.

    Article  CAS  PubMed  Google Scholar 

  • Wighman, F. L., & Kistler, D. J. (1989b). Headphone simulation of free-field listening II: Psychophysical validation. The Journal of the Acoustical Society of America, 85, 868–878.

    Article  Google Scholar 

  • Woods, T. M., Lopez, S. E., Long, J. H., Rahman, J. E., & Recanzone, G. H. (2006). Effects of stimulus azimuth and intensity on the single neuron activity in the auditory cortex of the alert macaque monkey. Journal of Neurophysiology, 96, 3323–3337.

    Article  PubMed  Google Scholar 

  • Zhang, H., Cai, R., Zhang, J., Pan, Y., & Sun, X. (2009). Environmental enrichment enhances directional selectivity of primary auditory cortical neurons in rats. Neuroscience Letters, 463, 162–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg H. Recanzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Recanzone, G.H. (2013). The Role of Auditory Cortex in Spatial Processing. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_4

Download citation

Publish with us

Policies and ethics