Skip to main content

Processing Streams in Auditory Cortex

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

The main functions of hearing are to (a) to identify sounds, much of it for the purpose of auditory communication, and to (b) localize sounds in space, mostly for the purpose of tracking and navigation. The brain seems to solve these two tasks in largely segregated cortical processing streams, a ventral and a dorsal stream. Besides processing of space and motion, the dorsal stream also participates in other important forms of audio-motor behavior, including sensorimotor control and integration for speech and music in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1:

primary auditory cortex

AEA:

anterior ectosylvian auditory area

AES:

anterior ectosylvian sulcus

AL:

anterolateral area

aST:

anterior superior temporal

BA:

Brodmann area

BOLD:

blood oxygen level–dependent

BP:

band-passed

BPN:

band-passed noise

CD:

compact disk

CL:

caudolateral area

CM:

caudomedial belt field

cs:

central sulcus

CS:

combination sensitivity

DCN:

dorsal cochlear nucleus

DLPFC:

dorsolateral prefrontal cortex

dPMC, vPMC:

dorsal and ventral premotor cortex

FM:

frequency-modulated

fMRI:

functional magnetic resonance imaging

IFC:

inferior frontal cortex

IFG, SFG:

inferior and superior frontal gyrus

IPL:

inferior parietal lobule

ITDILD:

interaural time and level differences

LB, MB:

lateral and medial belt

LIP:

lateral intraparietal area

MCs:

monkey calls

MCPI:

monkey call preference index

MEG:

magnetoencephalography

MGd:

dorsal nucleus of the medial geniculate

MGm:

medial nucleus of the medial geniculate

ML:

middle lateral area

MMN:

mismatch negativity

MSO, LSO:

medial and lateral superior olive

NSF:

National Science Foundation

PAF:

posterior auditory field

PET:

positron emission tomography

PFC:

prefrontal cortex

PMC:

premotor cortex

PPC:

posterior parietal cortex

pre-SMA:

presupplementary motor area

pST:

posterior superior temporal

PT:

planum temporale

R, RL:

rostral (=rostrolateral) field

SC:

superior colliculus

STG:

superior temporal gyrus

STP:

supratemporal plane

References

  • Aboitiz, F., Garcia, R. R., Bosman, C., & Brunetti, E. (2006). Cortical memory mechanisms and language origins. Brain and Language, 98(1), 40–56.

    PubMed  Google Scholar 

  • Ahveninen, J., Jääskeläinen, I. P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen, M., et al. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the USA, 103(39), 14608–14613.

    PubMed  CAS  Google Scholar 

  • Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2001). “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the USA, 98(21), 12301–12306.

    PubMed  CAS  Google Scholar 

  • Arbib, M. A., Verschure, P. F. M. J., & Seifert, U. (2013). Action, Language and Music: Events in Time and Models of the Brain. In M. A. Arbib (Ed.), Language, music and the brain: A mysterious relationship. Cambridge, MA: MIT Press.

    PubMed  Google Scholar 

  • Arnott, S. R., Binns, M. A., Grady, C. L., & Alain, C. (2004). Assessing the auditory dual-pathway model in humans. NeuroImage, 22(1), 401–408.

    PubMed  Google Scholar 

  • Baddeley, A., Lewis, V., & Vallar, G. (1984). Exploring the articulatory loop. The Quarterly Journal of Experimental Psychology, A(36), 233–252.

    Google Scholar 

  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., et al. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the USA, 103(2), 449–454.

    PubMed  CAS  Google Scholar 

  • Beitel, R. E., & Kaas, J. H. (1993). Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of Neurophysiology, 70(1), 351–369.

    PubMed  CAS  Google Scholar 

  • Bernal, B., & Ardila, A. (2009). The role of the arcuate fasciculus in conduction aphasia. Brain, 132(Pt 9), 2309–2316.

    PubMed  Google Scholar 

  • Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512–528.

    Google Scholar 

  • Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience, 7(3), 295–301.

    PubMed  CAS  Google Scholar 

  • Blakemore, S. J., Goodbody, S. J., & Wolpert, D. M. (1998). Predicting the consequences of our own actions: The role of sensorimotor context estimation. Journal of Neuroscience, 18(18), 7511–7518.

    PubMed  CAS  Google Scholar 

  • Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K., et al. (2001). Polymodal motion processing in posterior parietal and premotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1), 287–296.

    PubMed  CAS  Google Scholar 

  • Broca, P. (1861). Remarques sur le siège de la faculté du language articulé: Suivies d’une observation d’aphémie (perte de la parole). Bulletin de la Société Anatomique, 6, 330–357.

    Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 6797–6806.

    PubMed  CAS  Google Scholar 

  • Brugge, J. F., & Merzenich, M. M. (1973). Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. Journal of Neurophysiology, 36, 1138–1158.

    PubMed  CAS  Google Scholar 

  • Brunetti, M., Belardinelli, P., Caulo, M., Del Gratta, C., Della Penna, S., Ferretti, A., et al. (2005). Human brain activation during passive listening to sounds from different locations: An fMRI and MEG study. Human Brain Mapping, 26(4), 251–261.

    PubMed  CAS  Google Scholar 

  • Buchsbaum, B. R., & D’Esposito, M. (2008). The search for the phonological store: from loop to convolution. Journal of Cognitive Neuroscience, 20(5), 762–778.

    PubMed  Google Scholar 

  • Bulkin, D. A., & Groh, J. M. (2006). Seeing sounds: visual and auditory interactions in the brain. Current Opinion in Neurobiology, 16(4), 415–419.

    PubMed  CAS  Google Scholar 

  • Bushara, K. O., Weeks, R. A., Ishii, K., Catalan, M.-J., Tian, B., Rauschecker, J. P., & Hallett, M. (1999). Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nature Neuroscience, 2(8), 759–766.

    PubMed  CAS  Google Scholar 

  • Caplan, D., Rochon, E., & Waters, G. S. (1992). Articulatory and phonological determinants of word length effects in span tasks. The Quarterly Journal of Experimental Psychology, 45(2), 177–192.

    PubMed  CAS  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.

    PubMed  Google Scholar 

  • Chevillet, M., Riesenhuber, M., & Rauschecker, J. P. (2011). Functional correlates of the anterolateral processing hierarchy in human auditory cortex. Journal of Neuroscience, 31(25), 9345–9352.

    PubMed  CAS  Google Scholar 

  • Cohen, Y. E., Russ, B. E., Davis, S. J., Baker, A. E., Ackelson, A. L., & Nitecki, R. (2009). A functional role for the ventrolateral prefrontal cortex in non-spatial auditory cognition. Proceedings of the National Academy of Sciences of the USA, 106(47), 20045–20050.

    PubMed  CAS  Google Scholar 

  • Curio, G., Neuloh, G., Numminen, J., Jousmaki, V., & Hari, R. (2000). Speaking modifies voice-evoked activity in the human auditory cortex. Human Brain Mapping, 9(4), 183–191.

    PubMed  CAS  Google Scholar 

  • Cusack, R. (2005). The intraparietal sulcus and perceptual organization. Journal of Cognitive Neuroscience, 17(4), 641–651.

    PubMed  Google Scholar 

  • Damasio, H., & Damasio, A. R. (1980). The anatomical basis of conduction aphasia. Brain, 103(2), 337–350.

    PubMed  CAS  Google Scholar 

  • Davis, B., Christie, J., & Rorden, C. (2009). Temporal order judgments activate temporal parietal junction. Journal of Neuroscience, 29(10), 3182–3188.

    PubMed  CAS  Google Scholar 

  • Degerman, A., Rinne, T., Salmi, J., Salonen, O., & Alho, K. (2006). Selective attention to sound location or pitch studied with fMRI. Brain Research, 1077(1), 123–134.

    PubMed  CAS  Google Scholar 

  • Deouell, L. Y., Heller, A. S., Malach, R., D’Esposito, M., & Knight, R. T. (2007). Cerebral responses to change in spatial location of unattended sounds. Neuron, 55(6), 985–996.

    PubMed  CAS  Google Scholar 

  • Desimone, R., & Schein, S. J. (1987). Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology, 57, 835–868.

    PubMed  CAS  Google Scholar 

  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431.

    PubMed  Google Scholar 

  • DeWitt, I., & Rauschecker, J. P. (2012). Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences of the USA, 109(8), E505–E514.

    Google Scholar 

  • Dhanjal, N. S., Handunnetthi, L., Patel, M. C., & Wise, R. J. (2008). Perceptual systems controlling speech production. Journal of Neuroscience, 28(40), 9969–9975.

    PubMed  CAS  Google Scholar 

  • Diamond, I. T., Fisher, J. F., Neff, W. D., & Yela, M. (1956). Role of auditory cortex in discrimination requiring localization of sound in space. Journal of Neurophysiology, 19(6), 500–512.

    PubMed  CAS  Google Scholar 

  • Ebeling, U., & von Cramon, D. (1992). Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochirurgica, 115(3–4), 143–148.

    PubMed  CAS  Google Scholar 

  • Eliades, S. J., & Wang, X. (2003). Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. Journal of Neurophysiology, 89(4), 2194–2207.

    PubMed  Google Scholar 

  • Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453(7198), 1102–1106.

    PubMed  CAS  Google Scholar 

  • Engel, L. R., Frum, C., Puce, A., Walker, N. A., & Lewis, J. W. (2009). Different categories of living and non-living sound-sources activate distinct cortical networks. NeuroImage, 47(4), 1778–1791.

    PubMed  Google Scholar 

  • Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P. (2004). Is voice processing species-specific in the human brain? An fMRI study. NeuroImage, 23(3), 840–848.

    PubMed  Google Scholar 

  • Frey, S., Campbell, J. S., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 28(45), 11435–11444.

    PubMed  CAS  Google Scholar 

  • Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the USA, 103(7), 2458–2463.

    PubMed  CAS  Google Scholar 

  • Fu, K. G., Shah, A. S., Arnold, L., Garraghty, P. E., Smiley, J., Hackett, T. A., & Schroeder, C. E. (2003). Auditory cortical neurons respond to somatosensory stimulation. Journal of Neuroscience, 23, 7510–7515.

    PubMed  CAS  Google Scholar 

  • Galaburda, A. M., Sanides, F., & Geschwind, N. (1978). Human brain: Cytoarchitectonic left-right asymmetries in the temporal speech region. Archives of Neurology, 35(12), 812–817.

    PubMed  CAS  Google Scholar 

  • Gelfand, J. R., & Bookheimer, S. Y. (2003). Dissociating neural mechanisms of temporal sequencing and processing phonemes. Neuron, 38(5), 831–842.

    PubMed  CAS  Google Scholar 

  • Geschwind, N. (1965). Disconnexion syndromes in animals and man. Brain, 88(2), 237–294, 585–644.

    Google Scholar 

  • Ghazanfar, A. A., Maier, J. X., Hoffman, K. L., & Logothetis, N. K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. Journal of Neuroscience, 25(20), 5004–5012.

    PubMed  CAS  Google Scholar 

  • Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Gifford, G. W., 3rd, & Cohen, Y. E. (2004). Effect of a central fixation light on auditory spatial responses in area LIP. Journal of Neurophysiology, 91(6), 2929–2933.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London B:, Biological Sciences, 351(1346), 1445–1453.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Rees, A., Witton, C., Cross, P. M., Shakir, R. A., & Green, G. G. (1997). Spatial and temporal auditory processing deficits following right hemisphere infarction: A psychophysical study. Brain, 120(Pt 5), 785–794.

    PubMed  Google Scholar 

  • Griffiths, T. D., Rees, G., Rees, A., Green, G. G., Witton, C., Rowe, D., et al. (1998). Right parietal cortex is involved in the perception of sound movement in humans. Nature Neuroscience, 1(1), 74–79.

    PubMed  CAS  Google Scholar 

  • Grunewald, A., Linden, J. F., & Andersen, R. A. (1999). Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. Journal of Neurophysiology, 82(1), 330–342.

    PubMed  CAS  Google Scholar 

  • Grush, R. (2004). The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396; discussion 396–442.

    PubMed  Google Scholar 

  • Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39(5), 350–365.

    PubMed  Google Scholar 

  • Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1–2), 133–146.

    PubMed  Google Scholar 

  • Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 394(4), 475–495.

    PubMed  CAS  Google Scholar 

  • Halpern, A. R., & Zatorre, R. J. (1999). When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies. Cerebral Cortex, 9(7), 697–704.

    PubMed  CAS  Google Scholar 

  • Hauser, M. D. (1996). The evolution of communication. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heffner, H., & Masterton, B. (1975). Contribution of auditory cortex to sound localization in the monkey (Macaca mulatta). Journal of Neurophysiology, 38(6), 1340–1358.

    PubMed  CAS  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (1990). Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. Journal of Neurophysiology, 64(3), 915–931.

    PubMed  CAS  Google Scholar 

  • Hershberger, W. (1976). Afference copy, the closed-loop analogue of von Holst’s efference copy. Cybernetics Forum, 8, 97–102.

    Google Scholar 

  • Hickok, G., Okada, K., & Serences, J. T. (2009). Area Spt in the human planum temporale supports sensory-motor integration for speech processing. Journal of Neurophysiology, 101(5), 2725–2732.

    PubMed  Google Scholar 

  • Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., et al. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471.

    PubMed  CAS  Google Scholar 

  • Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: an MEG study. Journal of Cognitive Neuroscience, 14(8), 1125–1138.

    PubMed  Google Scholar 

  • Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., et al. (2000). Auditory cortex on the human posterior superior temporal gyrus. Journal of Comparative Neurology, 416, 79–92.

    PubMed  CAS  Google Scholar 

  • Imig, T. J., Irons, W. A., & Samson, F. R. (1990). Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. Journal of Neurophysiology, 63(6), 1448–1466.

    PubMed  CAS  Google Scholar 

  • Irvine, D. R. F. (1992). Physiology of auditory brainstem pathways. In R. R. Fay & A. A. Popper (Eds.), The mammalian auditory pathway: Neurophysiology (pp. 153–231). New York: Springer.

    Google Scholar 

  • Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J. L., S., Lin, F. H., et al. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the USA, 101(17), 6809–6814.

    PubMed  Google Scholar 

  • Jenkins, W. M., & Merzenich, M. M. (1984). Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology, 52(5), 819–847.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., Dell’Anna, M. E., Molinari, M., Rausell, E., & Hashikawa, T. (1995). Subdivisions of macaque monkey auditory cortex revealed by calcium- binding protein immunoreactivity. Journal of Comparative Neurology, 362(2), 153–170.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.

    PubMed  CAS  Google Scholar 

  • Kauramäki, J., Jääskeläinen, I. P., Hari, R., Möttönen, R., Rauschecker, J. P., & Sams, M. (2010). Transient adaptation of auditory cortex organization by lipreading and own speech production. Journal of Neuroscience, 30(4), 1314 –1321.

    PubMed  Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.

    PubMed  CAS  Google Scholar 

  • Kayser, C., Petkov, C. I., Augath, M., & Logothetis, N. K. (2007). Functional imaging reveals visual modulation of specific fields in auditory cortex. Journal of Neuroscience, 27(8), 1824–1835.

    PubMed  CAS  Google Scholar 

  • Keller, S. S., Roberts, N., & Hopkins, W. (2009). A comparative magnetic resonance imaging study of the anatomy, variability, and asymmetry of Broca’s area in the human and chimpanzee brain. Journal of Neuroscience, 29(46), 14607–14616.

    PubMed  CAS  Google Scholar 

  • Kikuchi, Y., Horwitz, B., & Mishkin, M. (2010). Hierarchical auditory processing directed rostrally along the monkey’s supratemporal plane. Journal of Neuroscience, 30(39), 13021–13030.

    PubMed  Google Scholar 

  • Korte, M., & Rauschecker, J. P. (1993). Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. Journal of Neurophysiology, 70(4), 1717–1721.

    PubMed  CAS  Google Scholar 

  • Krumbholz, K., Schönwiesner, M., Cramon, D. Y. v., Rübsamen, R., Shah, N. J., Zilles, K., & Fink, G. R. (2005). Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cerebral Cortex, 15(3), 317–324.

    PubMed  Google Scholar 

  • Kusmierek, P., & Rauschecker, J. P. (2009). Functional specialization of medial auditory belt cortex in the alert rhesus monkey. Journal of Neurophysiology, 102(3), 1606–1622.

    PubMed  Google Scholar 

  • Kusmierek, P., Ortiz, M., & Rauschecker, J. P. (2012). Sound-identity processing in early areas of the auditory ventral stream in the macaque. Journal of Neurophysiology, 107(4), 1123–1141.

    Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308–314.

    PubMed  CAS  Google Scholar 

  • Lakatos, P., Chen, C. M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279–292.

    PubMed  CAS  Google Scholar 

  • Leaver, A., Van Lare, J. E., Zielinski, B. A., Halpern, A., & Rauschecker, J. P. (2009). Brain activation during anticipation of sound sequences. Journal of Neuroscience, 29(8), 2477–2485.

    PubMed  CAS  Google Scholar 

  • Leaver, A. M., & Rauschecker, J. P. (2010). Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category. Journal of Neuroscience, 30(22), 7604–7612.

    PubMed  CAS  Google Scholar 

  • Lewis, J. W., & Van Essen, D. C. (2000). Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. Journal of Comparative Neurology, 428(1), 112–137.

    PubMed  CAS  Google Scholar 

  • Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., & DeYoe, E. A. (2005). Distinct cortical pathways for processing tool versus animal sounds. Journal of Neuroscience, 25(21), 5148–5158.

    PubMed  CAS  Google Scholar 

  • Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431–461.

    PubMed  CAS  Google Scholar 

  • Lomber, S. G., & Malhotra, S. (2008). Double dissociation of ’what’ and ’where’ processing in auditory cortex. Nature Neuroscience, 11(5), 609–616.

    PubMed  CAS  Google Scholar 

  • Lueschow, A., Miller, E. K., & Desimone, R. (1994). Inferior temporal mechanisms for invariant object recognition. Cerebral Cortex, 4(5), 523–531.

    PubMed  CAS  Google Scholar 

  • Maeder, P. P., Meuli, R. A., Adriani, M., Bellmann, A., Fornari, E., Thiran, J. P., et al. (2001). Distinct pathways involved in sound recognition and localization: A human fMRI study. NeuroImage, 14(4), 802–816.

    PubMed  CAS  Google Scholar 

  • Malhotra, S., Hall, A. J., & Lomber, S. G. (2004). Cortical control of sound localization in the cat: Unilateral cooling deactivation of 19 cerebral areas. Journal of Neurophysiology, 92(3), 1625–1643.

    PubMed  Google Scholar 

  • Margoliash, D., & Fortune, E. S. (1992). Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. Journal of Neuroscience, 12, 4309–4326.

    PubMed  CAS  Google Scholar 

  • Mendelson, J. R., & Cynader, M. S. (1985). Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Research, 327, 331–335.

    PubMed  CAS  Google Scholar 

  • Meredith, M. A., & Clemo, H. R. (1989). Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: An anatomical and electrophysiological study. Journal of Comparative Neurology, 289(4), 687–707.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., & Brugge, J. F. (1973). Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research, 50, 275–296.

    PubMed  CAS  Google Scholar 

  • Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of sound sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.

    PubMed  CAS  Google Scholar 

  • Middlebrooks, J. C., Clock, A. E., Xu, L., & Green, D. M. (1994). A panoramic code for sound location by cortical neurons. Science, 264(5160), 842–844.

    PubMed  CAS  Google Scholar 

  • Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology, 335(3), 437–459.

    PubMed  CAS  Google Scholar 

  • Müller-Preuss, P., & Ploog, D. (1981). Inhibition of auditory cortical neurons during phonation. Brain Research, 215(1–2), 61–76.

    PubMed  Google Scholar 

  • Mullette-Gillman, O. A., Cohen, Y. E., & Groh, J. M. (2005). Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. Journal of Neurophysiology, 94(4), 2331–2352.

    PubMed  Google Scholar 

  • Narins, P. M., & Capranica, R. R. (1980). Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain, Behavior and Evolution, 17, 48–66.

    CAS  Google Scholar 

  • Numminen, J., Salmelin, R., & Hari, R. (1999). Subject’s own speech reduces reactivity of the human auditory cortex. Neuroscience Letters, 265(2), 119–122.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., & Sanides, F. (1972). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift für Anatomie und Entwicklungsgeschichte, 139, 127–161.

    Google Scholar 

  • Perry, D. W., Zatorre, R. J., Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1999). Localization of cerebral activity during simple singing. NeuroReport, 10(18), 3979–3984.

    PubMed  CAS  Google Scholar 

  • Petrides, M., & Pandya, D. N. (1984). Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. Journal of Comparative Neurology, 228(1), 105–116.

    PubMed  CAS  Google Scholar 

  • Petrides, M., & Pandya, D. N. (2009). Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. Public Library of Science Biology, 7(8), e1000170.

    Google Scholar 

  • Pizzamiglio, L., Aprile, T., Spitoni, G., Pitzalis, S., Bates, E., D’Amico, S., & Di Russo, F. (2005). Separate neural systems for processing action- or non-action-related sounds. NeuroImage, 24(3), 852–861.

    PubMed  CAS  Google Scholar 

  • Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299(5606), 568–572.

    PubMed  CAS  Google Scholar 

  • Poremba, A., Malloy, M., Saunders, R. C., Carson, R. E., Herscovitch, P., & Mishkin, M. (2004). Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature, 427(6973), 448–451.

    PubMed  CAS  Google Scholar 

  • Rajan, R., Aitkin, L. M., & Irvine, D. R. (1990a). Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. Journal of Neurophysiology, 64(3), 888–902.

    PubMed  CAS  Google Scholar 

  • Rajan, R., Aitkin, L. M., Irvine, D. R., & McKay, J. (1990b). Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. Journal of Neurophysiology, 64(3), 872–887.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P. (1998a). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8, 516–521.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P. (1998b). Parallel processing in the auditory cortex of primates. Audiology and Neuro-Otology, 3, 86–103.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P. (2005). Neural encoding and retrieval of sound sequences. Annals of the New York Academy of Sciences, 1060, 125–135.

    PubMed  Google Scholar 

  • Rauschecker, J. P. (2007). Cortical processing of auditory space: Pathways and plasticity. In F. Mast & L.Jäncke (Eds.), Spatial processing in navigation, imagery, and perception (pp. 389–410). New York: Springer.

    Google Scholar 

  • Rauschecker, J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor integration and control. Hearing Research, 271, 16–25.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Korte, M. (1993). Auditory compensation for early blindness in cat cerebral cortex. Journal of Neuroscience, 13, 4538–4548.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 97(22), 11800–11806.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2004). Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology, 91(6), 2578–2589.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2005). Hierarchic processing of communication sounds in primates. In J. S. Kanwal & G. Ehret (Eds.), Behavior and neurodynamics for auditory communication. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in the macaque nonprimary auditory cortex. Science, 268(5207), 111–114.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., Tian, B., Pons, T., & Mishkin, M. (1997). Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology, 382, 89–103.

    PubMed  CAS  Google Scholar 

  • Ravizza, R. J., & Masterton, B. (1972). Contribution of neocortex to sound localization in opossum (Didelphis virginiana). Journal of Neurophysiology, 35(3), 344–356.

    PubMed  CAS  Google Scholar 

  • Reale, R. A., & Imig, T. J. (1980). Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology, 192, 265–291.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H. (2000). Spatial processing in the auditory cortex of the macaque monkey. Proceedings of the National Academy of Sciences of the USA, 97(22), 11829–11835.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Guard, D. C., Phan, M. L., & Su, T. K. (2000). Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology, 83(5), 2723–2739.

    PubMed  CAS  Google Scholar 

  • Remedios, R., Logothetis, N. K., & Kayser, C. (2009). Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. Proceedings of the National Academy of Sciences of the USA, 106(42), 18010–18015.

    PubMed  CAS  Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.

    Google Scholar 

  • Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428.

    PubMed  CAS  Google Scholar 

  • Rizzolatti, G., Ferrari, P. F., Rozzi, S., & Fogassi, L. (2006). The inferior parietal lobule: where action becomes perception. Novartis Foundation Symposium, 270, 129–140; discussion 140–125, 164–129.

    Google Scholar 

  • Romanski, L. M., & Goldman-Rakic, P. S. (2002). An auditory domain in primate prefrontal cortex. Nature Neuroscience, 5(1), 15–16.

    PubMed  CAS  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.

    PubMed  CAS  Google Scholar 

  • Sabes, P. N. (2000). The planning and control of reaching movements. Current Opinion in Neurobiology, 10(6), 740–746.

    PubMed  CAS  Google Scholar 

  • Saur, D., Kreher, B. W., Schnell, S., Kummerer, D., Kellmeyer, P., Vry, M. S., et al. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the USA, 105(46), 18035–18040.

    PubMed  CAS  Google Scholar 

  • Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. NeuroImage, 11(1), 1–12.

    PubMed  CAS  Google Scholar 

  • Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. S. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400–2406.

    PubMed  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1994). Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study. Journal of Comparative Neurology, 343(3), 445–463.

    PubMed  CAS  Google Scholar 

  • Smiley, J. F., Hackett, T. A., Ulbert, I., Karmas, G., Lakatos, P., Javitt, D. C., & Schroeder, C. E. (2007). Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys. Journal of Comparative Neurology, 502(6), 894–923.

    PubMed  Google Scholar 

  • Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482–489.

    PubMed  CAS  Google Scholar 

  • Stricanne, B., Andersen, R. A., & Mazzoni, P. (1996). Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. Journal of Neurophysiology, 76(3), 2071–2076.

    PubMed  CAS  Google Scholar 

  • Suga, N., O’Neill, W. E., & Manabe, T. (1978). Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science, 200, 778–781.

    PubMed  CAS  Google Scholar 

  • Tata, M. S., & Ward, L. M. (2005a). Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway. Experimental Brain Research, 167(3), 481–486.

    Google Scholar 

  • Tata, M. S., & Ward, L. M. (2005b). Spatial attention modulates activity in a posterior “where” auditory pathway. Neuropsychologia, 43(4), 509–516.

    PubMed  Google Scholar 

  • Tian, B., & Rauschecker, J. P. (2004). Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology, 92(5), 2993–3013.

    PubMed  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293.

    PubMed  CAS  Google Scholar 

  • Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39(3), 1429–1443.

    PubMed  Google Scholar 

  • Von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Die Naturwissenschaften, 37, 464–476.

    Google Scholar 

  • Wang, X. (2000). On cortical coding of vocal communication sounds in primates. Proceedings of the National Academy of Sciences of the USA, 97, 11843–11849.

    PubMed  CAS  Google Scholar 

  • Warren, J. D., Zielinski, B. A., Green, G. G. R., Rauschecker, J. P., & Griffiths, T. D. (2002). Analysis of sound source motion by the human brain. Neuron, 34, 1–20.

    Google Scholar 

  • Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: Auditory-motor transformations and the posterior temporal plane. Trends in Neurosciences, 28(12), 636–643.

    PubMed  CAS  Google Scholar 

  • Weeks, R. A., Aziz-Sultan, A., Bushara, K. O., Tian, B., Wessinger, C. M., Dang, N., et al. (1999). A PET study of human auditory spatial processing. Neuroscience Letters, 262(3), 155–158.

    PubMed  CAS  Google Scholar 

  • Wernicke, C. (1874). Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis. Breslau: Cohn & Weigert.

    Google Scholar 

  • Wernicke, C. (1881). Lehrbuch der Gehirnkrankheiten für Aerzte und Studirende. Kassel, Berlin: Verlag Theodor Fischer.

    Google Scholar 

  • Wessinger, C. M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., & Rauschecker, J. P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 13(1), 1–7.

    PubMed  CAS  Google Scholar 

  • Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.

    PubMed  CAS  Google Scholar 

  • Wise, R. J., Scott, S. K., Blank, S. C., Mummery, C. J., Murphy, K., & Warburton, E. A. (2001). Separate neural subsystems within ’Wernicke’s area’. Brain, 124(Pt 1), 83–95.

    PubMed  CAS  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.

    PubMed  CAS  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1431), 593–602.

    Google Scholar 

  • Yu, J. J., & Young, E. D. (2000). Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. Proceedings of the National Academy of Sciences of the USA, 97(22), 11780–11786.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11(10), 946–953.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Bouffard, M., Ahad, P., & Belin, P. (2002). Where is ’where’ in the human auditory cortex? Nature Neuroscience, 5(9), 905–909.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Bouffard, M., & Belin, P. (2004). Sensitivity to auditory object features in human temporal neocortex. Journal of Neuroscience, 24(14), 3637–3642.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.

    PubMed  CAS  Google Scholar 

  • Zimmer, U., & Macaluso, E. (2005). High binaural coherence determines successful sound localization and increased activity in posterior auditory areas. Neuron, 47(6), 893–905.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present chapter is an updated synthesis of prior publications by the author (Rauschecker & Tian, 2005; Rauschecker, 2007, 2011). The author’s work was supported by grants from the National Institutes of Health (R01 NS052494), the Cognitive Neuroscience Initiative of the National Science Foundation (BCS-0519127), and the NSF PIRE program (OISE-0730255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef P. Rauschecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rauschecker, J.P. (2013). Processing Streams in Auditory Cortex. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_2

Download citation

Publish with us

Policies and ethics