Skip to main content

Magnetoencephalography

  • Chapter
  • First Online:
The Human Auditory Cortex

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 43))

Abstract

Multiple modalities of noninvasive functional brain imaging have made a tremendous impact in improving our understanding of human auditory cortex. Since its advent in 1991, functional magnetic resonance imaging (fMRI) has emerged as the predominant modality for imaging of the functioning brain, for several reasons. As discussed by Talavage and Johnsrude (Chapter 6), fMRI uses MRI to measure changes in blood oxygenation level–dependent (BOLD) signals due to neuronal activation. It is a safe, noninvasive method that allows for whole-brain coverage, including the ability to examine activity in deep brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann, H., Hertrich, I., Mathiak, K., & Lutzenberger, W. (2001). Contralaterality of cortical auditory processing at the level of the M50/M100 complex and the mismatch field: A whole-head magnetoencephalography study. NeuroReport, 12(8), 1683–1687.

    PubMed  CAS  Google Scholar 

  • Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., & Merzenich, M. M. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences, of the USA, 98(23), 13367–13372.

    CAS  Google Scholar 

  • Alho, K., Connolly, J. F., Cheour, M., Lehtokoski, A., Huotilainen, M., Virtanen, J., et al. (1998). Hemispheric lateralization in preattentive processing of speech sounds. Neuroscience Letters, 258(1), 9–12.

    PubMed  CAS  Google Scholar 

  • Aliu, S. O., Houde, J. F., & Nagarajan, S. S. (2009). Motor-induced suppression of the auditory cortex. Journal of Cognitive Neuroscience, 21(4), 791–802.

    PubMed  Google Scholar 

  • Biermann-Ruben, K., Salmelin, R., & Schnitzler, A. (2005). Right rolandic activation during speech perception in stutterers: A MEG study. NeuroImage, 25(3), 793–801.

    PubMed  Google Scholar 

  • Brancucci, A., Penna, S. D., Babiloni, C., Vecchio, F., Capotosto, P., Rossi, D., et al. (2008). Neuromagnetic functional coupling during dichotic listening of speech sounds. Human Brain Mapping, 29(3), 253–264.

    PubMed  Google Scholar 

  • Breier, J. I., Billingsley-Marshall, R., Pataraia, E., Castillo, E. M., & Papanicolaou, A. C. (2006). Magnetoencephalographic studies of language reorganization after cerebral insult. Archives in Physical Medicine and Rehabilitation, 87(12 Supplement 2), S77–83.

    Google Scholar 

  • Cansino, S., & Williamson, S. J. (1997). Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Research, 764(1–2), 53–66.

    PubMed  CAS  Google Scholar 

  • Cansino, S., Ducorps, A., & Ragot, R. (2003). Tonotopic cortical representation of periodic complex sounds. Human Brain Mapping, 20(2), 71–81.

    PubMed  Google Scholar 

  • Carver, F. W., Fuchs, A., Jantzen, K. J., & Kelso, J. A. (2002). Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: Rate dependence and transient to steady-state transition. Clinical Neurophysiology, 113(12), 1921–1931.

    PubMed  Google Scholar 

  • Chait, M., Poeppel, D., de Cheveigne, A., & Simon, J. Z. (2007). Processing asymmetry of transitions between order and disorder in human auditory cortex. Journal of Neuroscience, 27(19), 5207–5214.

    PubMed  CAS  Google Scholar 

  • Curio, G., Neuloh, G., Numminen, J., Jousmaki, V., & Hari, R. (2000). Speaking modifies voice-evoked activity in the human auditory cortex. Human Brain Mapping, 9(4), 183–191.

    PubMed  CAS  Google Scholar 

  • Dalal, S. S., Sekihara, K., & Nagarajan, S. S. (2006). Modified beamformers for coherent source region suppression. IEEE Transactions in Biomedical Engineering, 53(7), 1357–1363.

    Google Scholar 

  • Dalal, S. S., Guggisberg, A. G., Edwards, E., Sekihara, K., Findlay, A. M., Canolty, R. T., et al. (2008). Five-dimensional neuroimaging: Localization of the time-frequency dynamics of cortical activity. NeuroImage, 40(4), 1686–1700.

    PubMed  Google Scholar 

  • Darvas, F., Pantazis, D., Kucukaltun-Yildirim, E., & Leahy, R. M. (2004). Mapping human brain function with MEG and EEG: Methods and validation. NeuroImage, 23(Supplement 1), S289–299.

    PubMed  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

    PubMed  Google Scholar 

  • Diesch, E., Eulitz, C., Hampson, S., & Ross, B. (1996). The neurotopography of vowels as mirrored by evoked magnetic field measurements. Brain and Language, 53(2), 143–168.

    PubMed  CAS  Google Scholar 

  • Draganova, R., Ross, B., Wollbrink, A., & Pantev, C. (2008). Cortical steady-state responses to central and peripheral auditory beats. Cerebral Cortex, 18(5), 1193–1200.

    PubMed  Google Scholar 

  • Eulitz, C., Diesch, E., Pantev, C., Hampson, S., & Elbert, T. (1995). Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. Journal of Neuroscience, 15(4), 2748–2755.

    PubMed  CAS  Google Scholar 

  • Eulitz, C., Maess, B., Pantev, C., Friederici, A. D., Feige, B., & Elbert, T. (1996). Oscillatory neuromagnetic activity induced by language and non-language stimuli. Brain Research: Cognitive Brain Research, 4(2), 121–132.

    PubMed  CAS  Google Scholar 

  • Forss, N., Makela, J. P., McEvoy, L., & Hari, R. (1993). Temporal integration and oscillatory responses of the human auditory cortex revealed by evoked magnetic fields to click trains. Hearing Research, 68(1), 89–96.

    PubMed  CAS  Google Scholar 

  • Fujiki, N., Jousmaki, V., & Hari, R. (2002). Neuromagnetic responses to frequency-tagged sounds: A new method to follow inputs from each ear to the human auditory cortex during binaural hearing. Journal of Neuroscience, 22(3), RC205.

    PubMed  Google Scholar 

  • Galambos, R., Makeig, S., & Talmachoff, P. J. (1981). A 40-Hz auditory potential recorded from the human scalp. Proceedings of the National Academy of Sciences, of the USA, 78(4), 2643–2647.

    PubMed  CAS  Google Scholar 

  • Gootjes, L., Raij, T., Salmelin, R., & Hari, R. (1999). Left-hemisphere dominance for processing of vowels: A whole-scalp neuromagnetic study. NeuroReport, 10(14), 2987–2991.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Johnsrude, I., Dean, J. L., & Green, G. G. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound? NeuroReport, 10(18), 3825–3830.

    PubMed  CAS  Google Scholar 

  • Gunji, A., Hoshiyama, M., & Kakigi, R. (2001). Auditory response following vocalization: A magnetoencephalographic study. Clinical Neurophysiology, 112(3), 514–520.

    PubMed  CAS  Google Scholar 

  • Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage, 15(1), 207–216.

    PubMed  Google Scholar 

  • Hairston, I. S., & Nagarajan, S. S. (2007). Neural mechanisms of the time-order error: An MEG study. Journal of Cognitive Neuroscience, 19(7), 1163–1174.

    PubMed  Google Scholar 

  • Heinks-Maldonado, T. H., Mathalon, D. H., Houde, J. F., Gray, M., Faustman, W. O., & Ford, J. M. (2007). Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Archives in General Psychiatry, 64(3), 286–296.

    Google Scholar 

  • Helenius, P., Salmelin, R., Service, E., Connolly, J. F., Leinonen, S., & Lyytinen, H. (2002). Cortical activation during spoken-word segmentation in nonreading-impaired and dyslexic adults. Journal of Neuroscience, 22(7), 2936–2944.

    PubMed  CAS  Google Scholar 

  • Hillebrand, A., & Barnes, G. R. (2002). A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage, 16(3 Pt 1), 638–650.

    PubMed  CAS  Google Scholar 

  • Hirano, S., Kojima, H., Naito, Y., Honjo, I., Kamoto, Y., Okazawa, H., et al. (1997). Cortical processing mechanism for vocalization with auditory verbal feedback. NeuroReport, 8(9–10), 2379–2382.

    PubMed  CAS  Google Scholar 

  • Hirata, Y., Kuriki, S., & Pantev, C. (1999). Musicians with absolute pitch show distinct neural activities in the auditory cortex. NeuroReport, 10(5), 999–1002.

    PubMed  CAS  Google Scholar 

  • Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: An MEG study. Journal of Cognitive Neuroscience, 14(8), 1125–1138.

    PubMed  Google Scholar 

  • Howard, M. F., & Poeppel, D. (2009). Hemispheric asymmetry in mid and long latency neuromagnetic responses to single clicks. Hearing Research, 257(1–2), 41–52.

    PubMed  Google Scholar 

  • Howard, M. F., & Poeppel, D. (2010). Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension. Journal of Neurophysiology, 104(5), 2500–2511.

    PubMed  Google Scholar 

  • Ishii, R., Canuet, L., Herdman, A., Gunji, A., Iwase, M., Takahashi, H., et al. (2009). Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography. Clinical Neurophysiology, 120(3), 497–504.

    PubMed  Google Scholar 

  • Koyama, S., Gunji, A., Yabe, H., Oiwa, S., Akahane-Yamada, R., Kakigi, R., & Näätänen, R. (2000). Hemispheric lateralization in an analysis of speech sounds. Left hemisphere dominance replicated in Japanese subjects. Brain Researh: Cognitive Brain Research, 10(1–2), 119–124.

    CAS  Google Scholar 

  • Kraus, N., Koch, D. B., McGee, T. J., Nicol, T. G., & Cunningham, J. (1999). Speech-sound discrimination in school-age children: Psychophysical and neurophysiologic measures. Journal of Speech Language and Hearing Research, 42(5), 1042–1060.

    CAS  Google Scholar 

  • Krumbholz, K., Patterson, R. D., Seither-Preisler, A., Lammertmann, C., & Lutkenhoner, B. (2003). Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex, 13(7), 765–772.

    PubMed  CAS  Google Scholar 

  • Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De)constructing the N400. Nature Reviews Neuroscience, 9(12), 920–933.

    PubMed  CAS  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.

    PubMed  CAS  Google Scholar 

  • Luo, H., Wang, Y., Poeppel, D., & Simon, J. Z. (2006). Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. Journal of Neurophysiology, 96(5), 2712–2723.

    PubMed  Google Scholar 

  • Luo, H., Wang, Y., Poeppel, D., & Simon, J. Z. (2007). Concurrent encoding of frequency and amplitude modulation in human auditory cortex: Encoding transition. Journal of Neurophysiology, 98(6), 3473–3485.

    PubMed  Google Scholar 

  • Lutkenhoner, B., Lammertmann, C., & Knecht, S. (2001). Latency of auditory evoked field deflection N100m ruled by pitch or spectrum? Audiology and Neurootology, 6(5), 263–278.

    CAS  Google Scholar 

  • Lutkenhoner, B., Krumbholz, K., Lammertmann, C., Seither-Preisler, A., Steinstrater, O., & Patterson, R. D. (2003). Localization of primary auditory cortex in humans by magnetoencephalography. NeuroImage, 18(1), 58–66.

    PubMed  CAS  Google Scholar 

  • Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences of the USA, 94(20), 10979–10984.

    PubMed  CAS  Google Scholar 

  • Makela, A. M., Alku, P., Makinen, V., Valtonen, J., May, P., & Tiitinen, H. (2002). Human cortical dynamics determined by speech fundamental frequency. NeuroImage, 17(3), 1300–1305.

    PubMed  Google Scholar 

  • Makela, A. M., Alku, P., Makinen, V., & Tiitinen, H. (2004). Glides in speech fundamental frequency are reflected in the auditory N1m response. NeuroReport, 15(7), 1205–1208.

    PubMed  Google Scholar 

  • Marinkovic, K., Dhond, R. P., Dale, A. M., Glessner, M., Carr, V., & Halgren, E. (2003). Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron, 38(3), 487–497.

    PubMed  CAS  Google Scholar 

  • Martikainen, M. H., Kaneko, K., & Hari, R. (2005). Suppressed responses to self-triggered sounds in the human auditory cortex. Cerebral Cortex, 15(3), 299–302.

    PubMed  Google Scholar 

  • Mathiak, K., Hertrich, I., Lutzenberger, W., & Ackermann, H. (1999). Preattentive processing of consonant vowel syllables at the level of the supratemporal plane: A whole-head magnetencephalography study. Brain Research: Cognitve Brain Research, 8(3), 251–257.

    CAS  Google Scholar 

  • Mathiak, K., Hertrich, I., Lutzenberger, W., & Ackermann, H. (2002). The influence of critical bands on neuromagnetic fields evoked by speech stimuli in humans. Neuroscience Letters, 329(1), 29–32.

    PubMed  CAS  Google Scholar 

  • Menning, H., Imaizumi, S., Zwitserlood, P., & Pantev, C. (2002). Plasticity of the human auditory cortex induced by discrimination learning of non-native, mora-timed contrasts of the Japanese language. Learning and Memory, 9(5), 253–267.

    PubMed  Google Scholar 

  • Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999a). EEG and MEG: Forward solutions for inverse methods. IEEE Transactions in Biomedical Engineering, 46(3), 245–259.

    CAS  Google Scholar 

  • Mosher, J. C., Baillet, S., & Leahy, R. M. (1999b). EEG source localization and imaging using multiple signal classification approaches. Clinical Neurophysiology, 16(3), 225–238.

    CAS  Google Scholar 

  • Näätänen, R., & Alho, K. (1997). Mismatch negativity—the measure for central sound representation accuracy. Audiology and Neurootology, 2(5), 341–353.

    CAS  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590.

    PubMed  CAS  Google Scholar 

  • Nagarajan, S. S., Attias, H. T., Hild, K. E., 2nd, & Sekihara, K. (2006). A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity. NeuroImage, 30(2), 400–416.

    PubMed  Google Scholar 

  • Nagarajan, S. S., Attias, H. T., Hild, K. E., 2nd, & Sekihara, K. (2007). A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Statistics in Medicine, 26(21), 3886–3910.

    PubMed  Google Scholar 

  • Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W., & Galuske, R. A. (2005). Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science, 309(5736), 948–951.

    PubMed  CAS  Google Scholar 

  • Nunez, P. L., & Srinivasan, R. (2006). A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clinical Neurophysiology, 117(11), 2424–2435.

    PubMed  Google Scholar 

  • Obleser, J., Lahiri, A., & Eulitz, C. (2003). Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset. NeuroImage, 20(3), 1839–1847.

    PubMed  Google Scholar 

  • Obleser, J., Scott, S. K., & Eulitz, C. (2006). Now you hear it, now you don’t: Transient traces of consonants and their nonspeech analogues in the human brain. Cerebral Cortex, 16(8), 1069–1076.

    PubMed  Google Scholar 

  • Okamoto, H., Stracke, H., Ross, B., Kakigi, R., & Pantev, C. (2007). Left hemispheric dominance during auditory processing in a noisy environment. Biomed Central Biology, 5, 52.

    Google Scholar 

  • Okamoto, H., Stracke, H., Draganova, R., & Pantev, C. (2009). Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cerebral Cortex, 19(10), 2290–2297.

    PubMed  Google Scholar 

  • Oram Cardy, J. E., Flagg, E. J., Roberts, W., & Roberts, T. P. (2005). Delayed mismatch field for speech and non-speech sounds in children with autism. NeuroReport, 16(5), 521–525.

    PubMed  Google Scholar 

  • Oram Cardy, J. E., Flagg, E. J., Roberts, W., & Roberts, T. P. (2008). Auditory evoked fields predict language ability and impairment in children. International Journal of Psychophysiology, 68(2), 170–175.

    PubMed  Google Scholar 

  • Ozaki, I., Suzuki, Y., Jin, C. Y., Baba, M., Matsunaga, M., & Hashimoto, I. (2003). Dynamic movement of N100m dipoles in evoked magnetic field reflects sequential activation of isofrequency bands in human auditory cortex. Clinical Neurophysiology, 114(9), 1681–1688.

    PubMed  Google Scholar 

  • Palva, S., Palva, J. M., Shtyrov, Y., Kujala, T., Ilmoniemi, R. J., Kaila, K., & Näätänen, R. (2002). Distinct gamma-band evoked responses to speech and non-speech sounds in humans. Journal of Neuroscience, 22(4), RC211.

    PubMed  Google Scholar 

  • Pantev, C., Hoke, M., Lehnertz, K., & Lutkenhoner, B. (1989). Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. Electroencephalography and Clinical Neurophysiology, 72(3), 225–231.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., & Lutkenhoner, B. (1999). Short-term plasticity of the human auditory cortex. Brain Research, 842(1), 192–199.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12(1), 169–174.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Ross, B., Fujioka, T., Trainor, L. J., Schulte, M., & Schulz, M. (2003). Music and learning-induced cortical plasticity. Annals of New York Academy of Sciences, 999, 438–450.

    Google Scholar 

  • Pantev, C., Lappe, C., Herholz, S. C., & Trainor, L. (2009). Auditory-somatosensory integration and cortical plasticity in musical training. Annals of the New York Academy of Sciences, 1169, 143–150.

    PubMed  Google Scholar 

  • Papanicolaou, A. C., Castillo, E., Breier, J. I., Davis, R. N., Simos, P. G., & Diehl, R. L. (2003). Differential brain activation patterns during perception of voice and tone onset time series: A MEG study. NeuroImage, 18(2), 448–459.

    PubMed  Google Scholar 

  • Parviainen, T., Helenius, P., & Salmelin, R. (2005). Cortical differentiation of speech and nonspeech sounds at 100 ms: Implications for dyslexia. Cerebral Cortex, 15(7), 1054–1063.

    PubMed  Google Scholar 

  • Patel, A. D. (2003). Rhythm in language and music: Parallels and differences. Annals of the New York Academy of Sciences, 999, 140–143.

    PubMed  Google Scholar 

  • Patel, A. D., & Balaban, E. (2004). Human auditory cortical dynamics during perception of long acoustic sequences: Phase tracking of carrier frequency by the auditory steady-state response. Cerebral Cortex, 14(1), 35–46.

    PubMed  Google Scholar 

  • Picton, T. W., John, M. S., Purcell, D. W., & Plourde, G. (2003). Human auditory steady-state responses: The effects of recording technique and state of arousal. Anesthesia and Analgesia, 97(5), 1396–1402.

    PubMed  Google Scholar 

  • Poeppel, D., Yellin, E., Phillips, C., Roberts, T. P., Rowley, H. A., Wexler, K., & Marantz, A. (1996). Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds. Brain Research: Cognitve Brain Research, 4(4), 231–242.

    CAS  Google Scholar 

  • Quraan, M. A., & Cheyne, D. (2010). Reconstruction of correlated brain activity with adaptive spatial filters in MEG. NeuroImage, 49(3), 2387–2400.

    PubMed  Google Scholar 

  • Roberts, T. P., & Poeppel, D. (1996). Latency of auditory evoked M100 as a function of tone frequency. NeuroReport, 7(6), 1138–1140.

    PubMed  CAS  Google Scholar 

  • Rosburg, T. (2003). Left hemispheric dipole locations of the neuromagnetic mismatch negativity to frequency, intensity and duration deviants. Brain Research: Cognitive Brain Research, 16(1), 83–90.

    PubMed  Google Scholar 

  • Rosburg, T., Haueisen, J., & Sauer, H. (2002). Stimulus duration influences the dipole location shift within the auditory evoked field component N100m. Brain Topography, 15(1), 37–41.

    PubMed  CAS  Google Scholar 

  • Ross, B., & Tremblay, K. (2009). Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hearing Research, 248(1–2), 48–59.

    PubMed  Google Scholar 

  • Ross, B., Tremblay, K. L., & Picton, T. W. (2007). Physiological detection of interaural phase differences. Journal of the Acoustical Society of America, 121(2), 1017–1027.

    PubMed  Google Scholar 

  • Rossini, P. M., Altamura, C., Ferreri, F., Melgari, J. M., Tecchio, F., Tombini, M., et al. (2007). Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica, 43(2), 241–254.

    PubMed  CAS  Google Scholar 

  • Rupp, A., Hack, S., Gutschalk, A., Schneider, P., Picton, T. W., Stippich, C., & Scherg, M. (2000). Fast temporal interactions in human auditory cortex. NeuroReport, 11(17), 3731–3736.

    PubMed  CAS  Google Scholar 

  • Sanders, L. D., Ameral, V., & Sayles, K. (2009). Event-related potentials index segmentation of nonsense sounds. Neuropsychologia, 47(4), 1183–1186.

    PubMed  Google Scholar 

  • Schmidt, G. L., Rey, M. M., Oram Cardy, J. E., & Roberts, T. P. (2009). Absence of M100 source asymmetry in autism associated with language functioning. NeuroReport, 20(11), 1037–1041.

    PubMed  Google Scholar 

  • Sekihara, K., & Nagarajan, S. S. (2008). Adaptive spatial filters for electromagnetic brain imaging. New York: Springer.

    Google Scholar 

  • Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23(13), 5545–5552.

    PubMed  CAS  Google Scholar 

  • Shahin, A., Roberts, L. E., & Trainor, L. J. (2004). Enhancement of auditory cortical development by musical experience in children. NeuroReport, 15(12), 1917–1921.

    PubMed  Google Scholar 

  • Shahin, A. J., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B. (2005). Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport, 16(16), 1781–1785.

    PubMed  Google Scholar 

  • Shahin, A. J., Roberts, L. E., Miller, L. M., McDonald, K. L., & Alain, C. (2007). Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds. Brain Topography, 20(2), 55–61.

    PubMed  Google Scholar 

  • Shahin, A. J., Trainor, L. J., Roberts, L. E., Backer, K. C., & Miller, L. M. (2010). Development of auditory phase-locked activity for music sounds. Journal of Neurophysiology, 103(1), 218–229.

    PubMed  Google Scholar 

  • Sharma, A., & Dorman, M. F. (1999). Cortical auditory evoked potential correlates of categorical perception of voice-onset time. Journal of the Acoustical Soceity of America, 106(2), 1078–1083.

    CAS  Google Scholar 

  • Shtyrov, Y., Kujala, T., & Pulvermuller, F. (2010). Interactions between language and attention systems: Early automatic lexical processing? Journal of Cognitive Neuroscience, 22(7), 1465–1478.

    PubMed  Google Scholar 

  • Singh, K. D., Barnes, G. R., Hillebrand, A., Forde, E. M., & Williams, A. L. (2002). Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. NeuroImage, 16(1), 103–114.

    PubMed  Google Scholar 

  • Singh, K. D., Barnes, G. R., & Hillebrand, A. (2003). Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing. NeuroImage, 19(4), 1589–1601.

    PubMed  Google Scholar 

  • Soeta, Y., & Nakagawa, S. (2009). Sound level-dependent growth of N1m amplitude with low and high-frequency tones. NeuroReport, 20(6), 548–552.

    PubMed  Google Scholar 

  • Szymanski, M. D., Yund, E. W., & Woods, D. L. (1999). Phonemes, intensity and attention: Differential effects on the mismatch negativity (MMN). Journal of the Acoustical Society of America, 106(6), 3492–3505.

    PubMed  CAS  Google Scholar 

  • Tavabi, K., Obleser, J., Dobel, C., & Pantev, C. (2007). Auditory evoked fields differentially encode speech features: An MEG investigation of the P50m and N100m time courses during syllable processing. European Journal of Neuroscience, 25(10), 3155–3162.

    PubMed  Google Scholar 

  • Tiitinen, H., Sivonen, P., Alku, P., Virtanen, J., & Näätänen, R. (1999). Electromagnetic recordings reveal latency differences in speech and tone processing in humans. Brain Research: Cognitive Brain Research, 8(3), 355–363.

    PubMed  CAS  Google Scholar 

  • Trainor, L. J., Shahin, A. J., & Roberts, L. E. (2009). Understanding the benefits of musical training: Effects on oscillatory brain activity. Annals of the New York Academy of Sciences, 1169, 133–142.

    PubMed  Google Scholar 

  • Ventura, M. I., Nagarajan, S. S., & Houde, J. F. (2009). Speech target modulates speaking induced suppression in auditory cortex. BioMed Central Neuroscience, 10, 58.

    PubMed  Google Scholar 

  • Vihla, M., & Salmelin, R. (2003). Hemispheric balance in processing attended and non-attended vowels and complex tones. Brain Research: Cognitve Brain Research, 16(2), 167–173.

    Google Scholar 

  • Vihla, M., Lounasmaa, O. V., & Salmelin, R. (2000). Cortical processing of change detection: Dissociation between natural vowels and two-frequency complex tones. Proceedings of the National Academy of Sciences of the USA, 97(19), 10590–10594.

    PubMed  CAS  Google Scholar 

  • Vrba, J., & Robinson, S. E. (2002). SQUID sensor array configurations for magnetoencephalography applications. Superconducting Science and Technology, 15(9), 51–89.

    Google Scholar 

  • Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62(3), 192–197.

    PubMed  Google Scholar 

  • Wipf, D., & Nagarajan, S. (2008). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3):947–66..

    PubMed  Google Scholar 

  • Wipf, D. P., Owen, J. P., Attias, H. T., Sekihara, K., & Nagarajan, S. S. (2010). Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage, 49(1), 641–655.

    PubMed  Google Scholar 

  • Yrttiaho, S., Tiitinen, H., May, P. J., Leino, S., & Alku, P. (2008). Cortical sensitivity to periodicity of speech sounds. Journal of the Acoustical Soceity of America, 123(4), 2191–2199.

    Google Scholar 

  • Yu, H. Y., Chen, J. T., Wu, Z. A., Yeh, T. C., Ho, L. T., & Lin, Y. Y. (2007). Side of the stimulated ear influences the hemispheric balance in coding tonal stimuli. Neurological Research, 29(5), 517–522.

    PubMed  Google Scholar 

  • Zatorre, R. J., Evans, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic perception and memory for pitch. Journal of Neuroscience, 14(4), 1908–1919.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Science, 6(1), 37–46.

    Google Scholar 

  • Zumer, J. M., Attias, H. T., Sekihara, K., & Nagarajan, S. S. (2007). A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data. NeuroImage, 37(1),102–115.

    PubMed  Google Scholar 

  • Zumer, J. M., Attias, H. T., Sekihara, K., & Nagarajan, S. S. (2008). Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data. NeuroImage, 41(3), 924–940.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikantan Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nagarajan, S., Gabriel, R.A., Herman, A. (2012). Magnetoencephalography. In: Poeppel, D., Overath, T., Popper, A., Fay, R. (eds) The Human Auditory Cortex. Springer Handbook of Auditory Research, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2314-0_5

Download citation

Publish with us

Policies and ethics