Skip to main content

Actuator Properties and Movement Control: Biological and Technological Models

  • Chapter
Multiple Muscle Systems

Abstract

Actuation is the process of conversion of energy to mechanical form. A device that accomplishes this conversion is an actuator. There are many types of actuators, with most including energy transformation through multiple forms. Of course an equally vital part of the definition of an actuator is controllability: the actuator’s conversion of energy must be modulated by a control input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andeen, G.B. (1988) Robot Design Handbook, SRI Intern., McGraw-Hill, New York.

    Google Scholar 

  • Baldwin, H.A. (1969) Realizable models of muscle function. In Biomechanics, Proc. of First Rock Is. Arsen. Biomech. Symp., ( Bootzin, D. and Muffley, H.C., eds.), pp. 139–148, Plenum Press, New York.

    Google Scholar 

  • Baldissera, F. and Campadelli, P. (1977) “How Motoneurons Control Development of Muscle Tension,” Nature 268: 146–147.

    Article  CAS  PubMed  Google Scholar 

  • Baldissera, F., Campadelli, P., and Piccinelli, L. (1982) “Neural Encoding of Input Transients Investigated by Intracellular Injection of Ramp Currents in Cat Alpha Motoneurons,” J. Physiol. 328: 73–86.

    CAS  PubMed  Google Scholar 

  • Baldissera, F., Campadelli, P., and Piccinelli, L. (1987) “The Dynamic Response of Cat Gastrocnemius Motor Units Investigated by Ramp-Current Injection into their Motorneurons,” J. Physiol. 387: 317–330.

    CAS  PubMed  Google Scholar 

  • Baldissera, F. and Parmiggiani, F. (1975) “Relevance of Motoneural Firing Adaptation to Tension Development in the Motor Unit,” Brain Research 91: 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Burke, D., Rudomin, P., and Zajac, F.E. (1970) “Catch Property in Single Mammalian Motor Units,” Science 168: 122–124.

    Article  CAS  PubMed  Google Scholar 

  • Burke, R.E., Rudomin, P., and Zajac, F.E. (1976) “The Effect of Activation History on Tension Production by Individual Muscle Units,” Brain Res. 109: 515–529.

    Article  CAS  PubMed  Google Scholar 

  • Burrows, C.R., Martin, D.J. and Ring, N.D. (1976) Responses of a pneumatically powered elbow-joint In: Human Locomotor Engng., Inst. Mech. Eng., pp. 136–144, London.

    Google Scholar 

  • Cook, G. and Stark, L. (1968) “The Human Eye Movement Mechanism: Experiments, Modeling, and Model Testing,” Arch. Opthalmol. 79: 428–436.

    CAS  Google Scholar 

  • Fenn, W.O. (1924) The relationship between the woik performed and the energy liberated in muscular contraction. J. Physiol. 58: 371–395.

    Google Scholar 

  • Gavrilovic, M.M. and Marie, M.R. (1969) Positional servo-mechanism activated by artificial muscles, Med. & Biol. Engng. 7: 77–82.

    Article  CAS  Google Scholar 

  • Granit, R., Kerneil, D., and Shortess, G.K. (1963) “Quantitative Aspects of Repetitive Firing of Mammalian Motoneurons Caused by Injected Currents,” J. Physiol. 168: 911–931.

    CAS  PubMed  Google Scholar 

  • Grodski, JJ. and Immega, G.B. (1988) Myoelectric control of compliance on a ROMAC protoarm. Proc. Int. Symp. Teleop. and Control, pp. 297–308.

    Google Scholar 

  • Hannaford, B. (1985) Control of Fast Movement: Human Head Rotation, Ph.D. Thesis, Department of Electrical Engineering and Computer Science, University of California, Beikeley.

    Google Scholar 

  • Hannaford, B. (1990) “A Non-linear Model of the Phasic Dynamics of Muscle Activation,” Accepted: IEEE Trans. Biomed. Engng.

    Google Scholar 

  • Hatze, H. (1977) “A Myocybemetic Control Model of Skeletal Muscle,” Biol Cybern. 25: 103–119.

    Article  CAS  PubMed  Google Scholar 

  • Hill, A.V. (1922) The maximum work and mechanical efficiency of human muscles, and their most economical speed. J. Physiol 56: 19–45.

    CAS  PubMed  Google Scholar 

  • HiU, A.V. (1938) “The Heat of Shortening and Dynamic Constraints of Muscle,” Proc. Royal Soc. 126:136–195, London.

    Article  Google Scholar 

  • Holmes, R. (1977) The Characteristics of Mechanical Engineering Systems, Pergamon, Oxford, 1977.

    Google Scholar 

  • Immega, G.B. (1986) Romax muscle powered robots. Proc. Robotics Res. Manf Eng., MS86-777: 1–7.

    Google Scholar 

  • Jacobsen, S.C., Iverson, E.K., Knutyti, D.F., Johnson, R.T. and Biggers, K.B. (1986) Design of the Utah- MIT dextrous hand, Proc. IEEE Robotics and Autom., pp. 1520–1532.

    Google Scholar 

  • Kerneil, D. (1965) “High Frequency Repetitive Firing of Cat Lumbosacral Motoneurons Stimulated by Long-Lasting Injected Currents,” Acta Physiol Scand. 65: 74–86.

    Article  Google Scholar 

  • Lansky, Z.J. and Schräder, L.Í. (1986) Industrial Pneumatic Control. Marcel Dekker, New York. (

    Google Scholar 

  • Lehman, S. and Stark, L. (1979) “Simulation of Linear and Nonlinear Eye Movement Models: Sensitivity Analysis and Enumeration Studies of Optimal Control,” J. Cyber. & Inf. Sci. 4: 21–43.

    Google Scholar 

  • Liang, D. (1989) Mechanical response of an anthopomoiphic head-neck system to external loading and muscle contraction, M.S. Thesis, Arizona State University.

    Google Scholar 

  • Lord, M. and Chitty, A. (1974) Stabilization of pneumatic prosthetic systems. In: Human Locomotor Control, Int. Mech. Engng., pp. 175–183, London.

    Google Scholar 

  • McCloy, D. and Martin, H.R. (1973) The Control of Fluid Power. John Wiley and Sons, New York.

    Google Scholar 

  • Morin, A.H. (1953) Elastic diaphragm. U.S. patent 2,642, 091.

    Google Scholar 

  • Paynter, H.M. (1961) Analysis and Design of Engineering Systems, MIT Press, Cambridge.

    Google Scholar 

  • Rothbart, H.A. (1985) Mechanical Design and Systems Handbook. McGraw-Hill, New Yoik.

    Google Scholar 

  • Schulte, R.A. (1961) The characteristics of the McKibbonartificial muscle. In The Application of External Power in Prosthetics and Orthotics, Lake Arrowhead, Pubi. 874, NAS-NRC, pp. 94–115.

    Google Scholar 

  • Shoemaker, P. (1989) Personal communication and unpublished manuscript.

    Google Scholar 

  • Simpson, D.C. and Lamb, D.W. (1965) A system for powered prostheses for severe bilateral upper limb deficiency. J. Bone & Joint Surg., 47: 442.

    CAS  Google Scholar 

  • Winters, J. (1987) “Biomechanical Modelling of the Human Head and Neck,” in Control of Head Movements, ed. Peterson, B., Richmond, J.R.

    Google Scholar 

  • Winters, J.M. (1985) Generalized Analysis and Design of Antagonistic Muscle Models: Effect of Nonlinear Properties on the Control of Human Movement, Ph.D. Dissertation, University of California, Berkeley, July, 1985.

    Google Scholar 

  • Winters, J.M. (1990) Braided artificial muscles: mechanical properties and future uses in prosthetics/orthotics. RENSA 13th Ann. Conf., Washington, D.C., pp. 173 - 174.

    Google Scholar 

  • Winters, J.M. and Stark, L. (1988) Simulated mechanical properties of synergistic muscles involved in movements of a variety of human joints, J. Biomech. 12: 1027–1042.

    Article  Google Scholar 

  • Yeaple, F. (1984) Fluid Power Design Handbook. Marcel Dekker, New York.

    Google Scholar 

  • Zangemeister, W.H., Lehman, S. and Stark, L. (1981) “Sensitivity Analysis and Optimization for a Head Movement Model”, Biol. Cybern., 41: 33–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Hannaford, B., Winters, J. (1990). Actuator Properties and Movement Control: Biological and Technological Models. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics