Skip to main content

Architecture and Elastic Properties of the Series Elastic Element of Muscle-Tendon Complex

  • Chapter
Multiple Muscle Systems

Abstract

Series elasticity in skeletal muscle is considered to be of great importance for muscle functioning in several ways. For example, in movement control studies, the musculo-skeletal system is often modelled as a mass-spring complex, in which the stiffness characteristics of the springs determine a joint equilibrium position which will be obtained at certain activation levels of the muscles (Schmidt, 1982). This type of modelling is also applied for studying mammalian running gaits with respect to movement speed, type of gait and energy expenditure [McMahon, 1985; Chapter 37 (McMahon); Taylor, 1985]. Furthermore, the series elastic element (SE) takes up part of length changes of the muscle-tendon complex, which means that the contractile element (CE) does not “see” all of the muscle-tendon complex movement [see also Chapter 38 (Hof)]. An approach in principle similar to these behavioral models can be applied to series elastic tendinous structures (i.e., part of SE) and muscle fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R.S. and Johnson, P.D. (1965) Muscle stretch and theories of contraction. Am. J. Physiol., 208: 412–416.

    CAS  PubMed  Google Scholar 

  • Bahler, A.S. (1967) Series elastic component of mam-malian skeletal muscle. Am. J. Physiol., 213: 1560–1564.

    CAS  PubMed  Google Scholar 

  • Blangé T., Karemaker, J.M. and Kramer, A.E.J.L. (1972) Elasticity as an expression of cross-bridge activity in rat muscle. Pflugers Archiv., 336: 277–288.

    Article  PubMed  Google Scholar 

  • Blangé T., Stienen, G.J.M. and Treijtel, B.W. (1985) Active stiffness in frog skinned muscle fibres at different Ca concentrations. J. Physiol., 366: 65 P.

    Google Scholar 

  • Bobbert, M.F., Ettema, G.J.C. and Huijing, P.A. (1990) The force-length relationship of a muscle-tendon complex: experimental results and model calculations. Eur. J. appl. Physiol., accepted.

    Google Scholar 

  • Bressler, B.H. and Clinch, N.F. (1974) The compliance of contracting skeletal muscle. J. Physiol., 237: 477–493.

    CAS  PubMed  Google Scholar 

  • Bressler, B.H. and Clinch, N.F. (1975) Cross bridges as the major source of compliance in contracting skeletal muscle. Nature, 256: 221–222.

    Article  CAS  PubMed  Google Scholar 

  • Cavagna, G.A. (1977) Storage and utilization of elastic energy in skeletal muscle. Exercise Sport Sci. Rev., 5: 89–129.

    Article  CAS  Google Scholar 

  • Close, R.I. (1972) Dynamic properties of mammalian skeletal muscles. Physiol. Rev., 52: 129–197.

    CAS  PubMed  Google Scholar 

  • Ettema, G.J.C. and Huijing, P.A. (1989) Properties of the tendinous structures and series elastic component of EDL muscle-tendon complex of the rat. J. Biomech., 22: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  • Ettema, G.J.C. and Huijing, P.A. (1990) Contributions to compliance of series elastic component by tendinous structures and cross-bridges in rat muscle-tendon complexes. Submitted to J. Biomech.

    Google Scholar 

  • Ford, L.E., Huxley, A.F. and Simmons, R.M. (1981) The relation between stiffness and filament overiap in stimulated frog muscle fibres. J. Physiol., 311: 219–249.

    CAS  PubMed  Google Scholar 

  • Haan, A. de, Ingen Schenau, G.J. van, Ettema, G.J., Huijing, P.A. and Lodder, M.A.N. (1989) Efficiency of rat medial gastrocnemius muscle in contractions with and without an active prestretch. J. Exp. Biol., 141: 327–341.

    PubMed  Google Scholar 

  • Huijing, P.A. and Ettema, G.J.C. (1988/89) Length- force characteristics of aponeurosis in passive muscle and during isometric and slow dynamic contractions of rat gastrocnemius muscle. Acta Morphol. Neerl.-Scand., 26: 51–62.

    Google Scholar 

  • Huijing, P.A. and Woittiez, R.D. (1984) The effect of architecture on skeletal muscle performance: A simple planimetric model. Neth. J. Zool., 34: 21–32.

    Article  Google Scholar 

  • Huijing, P.A. and Woittiez, R.D. (1985) Notes on planimetric and three-dimensional muscle models. Neth. J. Zool., 35: 521–525.

    Article  Google Scholar 

  • Ingen Schenau, G.J. van, Bobbert, M.F., Ettema, G.J., de Graaf, J.B. and Huijing, P.A. (1988) A simulation of rat EDL force output based on intrinsic muscle properties. J. Biomech., 21: 815–824.

    Article  Google Scholar 

  • Jewell, B.R. and Wilkie, D.R. (1958) An analysis of the mechanical components in frog’s striated muscle. J. Physiol., 143: 515–540.

    CAS  PubMed  Google Scholar 

  • Joyce, G.C. and Rack, P.M.H. (1969) Isotonic lengthening and shortening movements of cat soleus muscle. J. Physiol., 204: 475–491.

    CAS  PubMed  Google Scholar 

  • Komi, P.V. (1984) Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exercise Sport Sci. Rev., 12: 81–121.

    Article  CAS  Google Scholar 

  • Maier, A., Eldred, E. and Edgerton, V.R. (1972) The effects on spindles of muscle atrophy and hypertrophy. Exp. Neurol., 37: 100–123.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, T.A. (1985) The role of compliance in mammalian running gaits. J. Exp. Biol., 115: 263–282.

    CAS  PubMed  Google Scholar 

  • Morgan, D.L. (1977) Separation of active and passive components of short-range stiffness of muscle. Am. J. Physiol, 232: C45–C49.

    CAS  PubMed  Google Scholar 

  • Morgan, D.L., Proske, U. and Warren, D. (1978) Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos. J. Physiol., 282: 253–261.

    CAS  PubMed  Google Scholar 

  • Otten, E. (1985) Morphometries and force-length relations of skeletal muscle. In Biomechanics IX-AA (ed. D.A. Winter). Champaign, Illinois: Human Kinetic Publishers, pp. 27–32.

    Google Scholar 

  • Otten, E. (1988) Concepts and models of functional architecture in skeletal muscle. Exercise Sport Sci. Rev., 16: 89–137.

    Article  CAS  Google Scholar 

  • Proske, U. and Morgan, D.L. (1984) Stiffness of cat soleus muscle and tendon during activation of part of muscle. J. Neurophysiol., 52: 459–468.

    CAS  PubMed  Google Scholar 

  • Proske, U. and Morgan, D.L. (1987) Tendon stiffness: methods of measurement and significance for the control of movement, a review. J. Biomech., 20: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Rack, P.M.H., Ross, H.F., Thilmann, A.F. and Walters, D.K.W. (1983) Reflex responses at the human ankle: the importance of tendon compliance. J. Physiol., 344: 503–524.

    CAS  PubMed  Google Scholar 

  • Rack, P.M.H. and Ross, H.F. (1984) The tendon of flexor pollicis longus: its effects on the muscular control of force and position at the human thumb. J. Physiol., 351: 99–110.

    CAS  PubMed  Google Scholar 

  • Rack, P.M.H. and Westbury, D.R. (1984) Elastic properties of the cat soleus tendon and their functional importance. J. Physiol, 347: 479–495.

    CAS  PubMed  Google Scholar 

  • Schmidt, R.A. (1982) Motor Control and Learning. A Behavioral Emphasis. Human Kinetic Publishers, Champaign, Illinois, pp. 267–270.

    Google Scholar 

  • Stephenson, D.G., Stewart, A.W. and Wilson, G.J. (1989) Dissociation of force from myofibrillar MgATPase and stiffness at short sarcomere lengths in rat and toad skeletal muscle. J. Physiol., 410: 351–366.

    CAS  PubMed  Google Scholar 

  • Sugi, H. and Tameyasu, T. (1979) The origin of the instanteneous elasticity in single frog muscle fibres. Experientia, 35: 227–228.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C.R. (1985) Force development during sustained locomotion: A determinant of gait, speed and metabolic power. J. Exp. Biol, 115: 253–262.

    CAS  PubMed  Google Scholar 

  • Walmsley, B. and Proske, U. (1981) Comparison of stiffness of soleus and medial gastrocnemius muscles in cats. J. Neurophysiol., 46: 250–259.

    CAS  PubMed  Google Scholar 

  • Woittiez, R.D., Huijing, P.A., Boom, H.B.K. and Rozendal, R.H. (1984) A three dimensional muscle model: A quantified relation between form and function of skeletal muscles. J. Morphol., 182: 95–113.

    Article  CAS  PubMed  Google Scholar 

  • Zajac, F.E., Topp, E.L. and Stevenson, P.J. (1986) A dimensionless musculotendon model. Proc. 8th ann. conf. of IEEE Engng. in Med. and Biology Soc. IEEE, Piscataway NJ, pp. 601–604.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Ettema, G.J.C., Huijing, P.A. (1990). Architecture and Elastic Properties of the Series Elastic Element of Muscle-Tendon Complex. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics