Skip to main content

The Charge-Transfer Model of Myofilamentary Interaction: Prediction of Force Enhancement and Related Myodynamic Phenomena

  • Chapter
Multiple Muscle Systems

Abstract

The exact mechanism of myofilamentary energy conversion and force production in skeletal muscle remains shrouded in mystery. Although a large amount of information is available on the structure and function of the tension-generating subunits of the actin and myosin filaments, the intricate processes of inter-molecular force production are still not understood. On the contrary, established theories and models of muscular contraction are now being seriously challenged on the grounds of new experimental evidence (Pollack, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop, A.R. (1984) Solitons in synthetic and biological polymers. In: Nonlinear Electrodynamics in Biogical Systems (Edited by Adey, W.R. and Lawrence, A.F. ), pp. 155–175, Plenum, New York.

    Chapter  Google Scholar 

  • Borejdo, J., Putnam, S. and Morales, M.F. (1979) Fluctuations in polarized fluorescence: evidence that muscle cross-bridges rotate repetitively during contraction. Proc. Natl. Acad. Sci. USA 76: 6346–6350.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, W.J. (1957) Adenosinetriphos hate and the shortening of muscular models. J. Cell. Comp. Physiol. 49: Suppl. 267–290.

    Google Scholar 

  • Cook, R., Crowder, M.S., Wendt, C.H., Bamett, V.A. and Thomas, D.D. (1984) Muscle cross-bridges: Do they rotate? In: Contractile Mechanisms in Muscle (Edited by Pollak, G.H. and Sugi, H. ), pp. 413–423, Plenum, New York.

    Google Scholar 

  • Curtin, N.A. and Woledge, R.C. (1978) Energy changes and muscular contraction. Physiol. Rev. 58: 690–761.

    PubMed  CAS  Google Scholar 

  • Davydov, A.S. (1982) The migration of energy and electrons in biological systems. In: Biology and Quantum Mechanics (Edited by Holden, A.V. and Winlow, B. ), Springer, Berlin.

    Google Scholar 

  • Déléze, J.B. (1961) The mechanical properties of the semitendinosus muscle at lengths greater than its length in the body. J. Physiol. 158: 154–164.

    PubMed  Google Scholar 

  • Dragomir, C.T. (1970) On the nature of forces acting between myofilaments in resting state and under contraction. J. Theor. Biol. 27: 343–356.

    Article  PubMed  CAS  Google Scholar 

  • Edman, K.A.P., Elzinga, G. and Noble, M.I.M. (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibers. J. Physiol. 281: 139–155.

    PubMed  CAS  Google Scholar 

  • Edman, K.A.P., Elzinga, G. and Noble, M.I.M. (1984) Stretch of contracting muscle fibers: evidence for regularly spaced active sites along the filaments and enhanced mechanical performance. In: Contractile Mechanisms in Muscle (Edited by Pollack, G.H. and Sugi, H. ), pp. 739–749, Plenum, New York.

    Google Scholar 

  • Elzinga, G., Lännergren, J. and Stienen, G.J.M. (1987) Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus Leavis at 20°C. J. Physiol. 393: 399–412.

    PubMed  CAS  Google Scholar 

  • Flitney, F.W. and Hirst, D.G. (1978) Cross-bridge detachment and sarcomere ‘give’ during stretch of active frog’s muscle. J. Physiol. 276: 449–465.

    PubMed  CAS  Google Scholar 

  • Ford, L.E., Huxley, A.F. and Simmons, R.M. (1977) Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. London 269: 441–515.

    PubMed  CAS  Google Scholar 

  • Gilbert,C., Kretzschmar, K.M., Wilkie, D.R. and Woledge, R.C. (1971) Chemical change and energy output during muscular contraction. J. Physiol. London 218: 163–193.

    PubMed  CAS  Google Scholar 

  • Green, L.E. (1981) Comparison of the binding of heavy meromyosin and myosin subfragment 1 to F- actin. Biochemistry 20: 2120–2126.

    Article  Google Scholar 

  • Hammeroff, R.S., Smith, S.A. and Watt, R.C. (1984) Nonlinear Electrodynamics in Cytoskeletal Protein Lattices. In: Nonlinear Electrodynamics in Biological Systems (Edited by Adey, W.R. and Lawrence, A.F. ), pp. 567–583, Plenum, New York.

    Chapter  Google Scholar 

  • Hatze.H. (1973) A theory of contraction and a mathematical model of striated muscle. J. theor. Biol. 40: 219–246.

    Article  PubMed  CAS  Google Scholar 

  • Hatze.H. (1981) Myocybernetic Control Models of Skeletal Muscle. University of South Africa Press, Pretoria.

    Google Scholar 

  • Hill, D.K. (1968) Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J. Physiol. London 199: 637–684.

    PubMed  CAS  Google Scholar 

  • Hill, L. (1977) A-band length, striation spacing and tension change on stretch of active muscle. J. Physiol. 266: 677–685.

    PubMed  CAS  Google Scholar 

  • Hill, T.L., Eisenberg, E., Chen, Y.D. and Podolsky, R.J. (1975) Some self-consistent two-state sliding filament models of muscle contraction. Biophys. J. 15: 335–372.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T.L. (1977) Free Energy Transduction in Biology. Academic Press, New York.

    Google Scholar 

  • Hofacker, G.L. (1982) Wechselwirkungen zwischen Strukturbausteinen. In: Biophysik (Edited by Hoppe, W., Lohmann, W., Markl, H. and Ziegler, H. ), pp. 232–239, Springer, New York.

    Google Scholar 

  • Homsher, E., Irving, M. and Lebacq, J. (1983) The variation in shortening heat with sarcomere length in frog muscle. J. Physiol. 345: 107–121.

    PubMed  CAS  Google Scholar 

  • Huxley, A.F. (1957) Muscle structure and theories of contraction. Progr. Biophys. biophys. Chem. 7: 255–318.

    CAS  Google Scholar 

  • Huxley, A.F. (1988) Muscular contraction. Ann. Rev. Physiol. 50: 1–16.

    Article  CAS  Google Scholar 

  • Huxley, A.F. and Simmons, R.M. (1971) Proposed mechanism of force generation in striated muscle. Nature 233: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H.E. (1979) Time resolved X-ray diffraction studies in muscle. In: Cross-Bridge Mechanism in Muscle Contraction (Edited by Pollack, G.H. and Sugi, H. ) pp. 391–405, University Park Press, Baltimore.

    Google Scholar 

  • Huxley, H.E. (1984) Time-resolved X-Ray diffraction studies of cross-bridge movement and their interpretation. In: Contractile Mechanisms in Muscle (Edited by Pollack, G.H. and Sugi, H. ) pp. 161–168, Plenum, New York.

    Google Scholar 

  • Kawai, M. and Brandt, P.W. (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J. Muscle Res. Cell Motil. 1: 279–303.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, T. (1985) Thermodynamic analysis of muscle ATPase mechanisms. Physiol. Rev. 65: 467–551.

    PubMed  CAS  Google Scholar 

  • Ladik, J.J. (1982) Charge-Transfer-Reaktionen in Biomolekülen. In: Biophysik (Edited by Hoppe, W., Lohmann, W., Markl, H. and Ziegler, H. ), p. 239, Springer, New York.

    Google Scholar 

  • Laki, K. and Bowen, W.J. (1955) The contraction of muscle fiber and myosin B thread in KI and KSCN solutions. Biochem. Biophys. Acta 16: 301–302.

    Article  PubMed  CAS  Google Scholar 

  • Lomdahl, P.S. (1984) Nonlinear dynamics of globular proteins. In: Nonlinear Electrodynamics in Biological Systems (Edited by Adey, W.R. and Lawrence, A.F. ) pp. 143–154, Plenum, New York.

    Chapter  Google Scholar 

  • Mandelkern, L. and Villarico, E.A. (1969) The effect of salts and adenosine 5’-triphosphate on the shortening of glycerinated muscle fibers. Macromolecules 3: 394–401.

    Article  Google Scholar 

  • Mornet, D., Betrand, R., Pantel, P., Audemard, E. and Kassab, R. (1981a) Proteolytic approach to structure and function of actin recognition site in myosin heads. Biochemistry 20: 2110–2120.

    Article  PubMed  CAS  Google Scholar 

  • Mornet, D., Betrand, R., Pantel, P., Audemard, E. and Kassab, R. (1981b) Structure of the actin-myosin interface. Nature 292: 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Pepe, F.A. (1983) Immunological techniques in fluorescence and electron microscopy applied to skeletal muscle fibers. In: Handbook of Physiology, Section 10: Skeletal Muscle (Edited by Peachy, L.D. ) pp. 113–142, Am. Physiol. Soc., Bethesda.

    Google Scholar 

  • Podolsky, R.J., Onge, R.St., Yu, L. and Lymn, R.W. (1976) X-ray diffraction of actively shortening muscle. Proc. Natl. Acad. Sci USA 73: 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, G.H. (1983) The cross-bridge theory. Physiol. Reviews 63: 1049–1113.

    CAS  Google Scholar 

  • Schoenberg, M., Brenner, B., Chalovich, J.M., Greene, L.E. and Eisenberg, E. (1984). Cross-bridge attachment in relaxed muscle. In: Contractile Mechanisms in Muscle (Edited by Pollack, G.H. and Sugi, H. ) pp. 269–279, Plenum, New York.

    Google Scholar 

  • Scott, A.C. (1984) Solitons and Bioenergetics. In: Nonlinear Electrodynamics in Biological Systems (Edited by Adey, W.R. and Lawrence, A.F. ), pp. 133–142, Plenum, New York.

    Chapter  Google Scholar 

  • Sugi, H. (1979) The origin of the series elasticity in striated muscle fibers. In: Cross-Bridge Mechanism in Muscle Contraction (Edited by Sugi, H. and Pollack, G.H. ), pp. 85–102, Univerity of Tokyo Press, Tokyo.

    Google Scholar 

  • Szilagyi, L., Bâlint, M., Sréter, F.A. and Gergely, J. (1979) Photoafflnity labelling with an ATP analog of the N-terminal peptide of myosin. Biochem. Biophys. Res. Commun. 87: 936–945.

    Article  PubMed  CAS  Google Scholar 

  • Tawada, K., Kimura, M. (1984) Cross-linking studies related to the location of the rigor compliance in glycerinated rabbit psoas fibers: Is the SII portion of the crossbridge compliant? In: Contractile Mechanisms in Muscle (Edited by Pollack, G.H. and Sugi, H. ). pp. 385–393, Plenum, New York.

    Google Scholar 

  • Van den Hooff, H. and Blangé, T. (1984) Superfast tension transients from intact muscle fibers. Pflügers Arch. 400: 280–285.

    Article  PubMed  Google Scholar 

  • Wakabayashi, T., Toyoshima, C. and Katayama, E. (1984) Image analysis of the complex of actin- tropomyosin and myosin subfragment 1. In: Contractile Mechanisms in Muscle (Edited by Pollack, G.H. and Sugi, H. ), pp. 21–26. Plenum, New York.

    Google Scholar 

  • Wells, J.A. and Yount, R.G. (1979) Active site trapping of nucleotides by crosslinking two sulfhydrils in myosin subfragment 1. Proc. Natl. Acad. Sci. USA 76: 4966–4970.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K. and Sekine, T. (1979) Interaction of myosin subfragment-1 with actin. J. Biochem. 86: 1855–1881.

    PubMed  CAS  Google Scholar 

  • Yanagida, T. (1984) Angles of fiuorcscently labelled myosin heads and actin monomers in contracting and rigor stained muscle fiber. In: Contractile Mechanisms in Muscle (Edited by Pollack, G.H. and Sugi, H. ), pp. 397–408, Plenum, New York.

    Google Scholar 

  • Zahalak, G.I. (1981) A distribution-moment ap-proximation for kinetic theories of muscular contractioa Math. Biosci. 55: 89–114.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Hatze, H. (1990). The Charge-Transfer Model of Myofilamentary Interaction: Prediction of Force Enhancement and Related Myodynamic Phenomena. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics