Skip to main content

Nonlinear Damping of Limb Motion

  • Chapter
Multiple Muscle Systems

Abstract

The muscle-reflex mechanisms form a feedback system called the motor servo (Houk and Rymer, 1981; Gielen and Houk, 1987), which consists of a muscle, its spindle receptors, and the corresponding reflex pathways back to the muscle. This neuromuscular system mediates the stretch and unloading reflex of the muscle by the feedback. Motivated by a desire to understand the capabilities of biological arms, many researchers have studied limb movements (Asatryan and Feldman, 1965; Feldman, 1966; Freund and Budingen, 1978; Gottlieb et al., 1989a,b; Hasan, 1983,, 1985,, 1986; Hogan, 1984a,b; Polit and Bizzi, 1979; Stein, 1982) and findings have been applied to arm control and task planning (Atkeson and Hollerbach, 1985; Bizzi et al., 1978,, 1982,, 1984; Flash, 1987; Flash and Hogan, 1985; Hogan, 1985; Hollerbach, 1982; Hollerbach and Flash, 1982; Mussa-Ivaldi et al., 1985,, 1988; Uno et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asatryan, D.G. and Feldman, A.G. (1985) “Functional Tuning of the Nervous System with Control of Movement or Maintenance of a Steady Posture # I. Mechanographic Analysis of the Work of the Joint on Execution of a Postural Task,” Biophysics USSR 10: 925–935.

    Google Scholar 

  • Atkeson, C.G. and Hollerbach, J.M. (1985) “Kinematic Features of Unrestrained Vertical Aim Movements,” J. Neuroscience 5: 2318–2330.

    CAS  Google Scholar 

  • Bawa, P., Mannard, A., and Stein, R.B. (1976) “Predictions and Experimental Tests of a Visco- Elastic Muscle Model Using Elastic and Inertial Loads,” Biol. Cybern. 22: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Bizzi, E., Accornero, N., Chappie, W., and Hogan, N. (1984) “Posture Control and Trajectoiy Formation During Arm Movement,” J. Neuroscience 4: 2738–2744.

    CAS  Google Scholar 

  • Bizzi, E., Chappie, W., and Hogan, N. (1982) “Mechanical Properties of Muscles, Implication for Motor Control,” Trends Neurosci. 5: 395–398.

    Article  Google Scholar 

  • Bizzi, E., Dev, P., Morasso, P., and Polit, A. (1978) “Effect of Load Disturbances During Centrally Initiated Movements,” J. Neurophys. 41: 542: 556.

    Google Scholar 

  • Feldman, A.G. (1966) “Functional Tuning of the Nervous System with Control of Movement or Maintenance of a Steady Posture, II. Controllable Parameters of the Muscles,” Biophysics USSR 11: 565: 578.

    Google Scholar 

  • Flash, T. (1987) “The Control of Hand Equilibrium Trajectories in Multi-Joint Arm Movements,” Biol. Cybern. 57: 257: 274.

    Google Scholar 

  • Flash, T. and Hogan, N. (1985) “The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model,” J. Neuroscience 5: 1688–1703.

    CAS  Google Scholar 

  • Freund, H.J. and Budingen, H.J. (1978) “The Relationship Between Speed and Amplitude of the Fastest Voluntary Contractions of Human Arm Muscles,” Exp. Brain Res. 31: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Gielen, C.C.A.M. and Houk, J.C. (1984) “Nonlinear Viscosity of Human Wrist,” J. Neurophys. 52 (3): 553–569.

    CAS  Google Scholar 

  • Gielen, C.C.A.M., Houk, J.C., Marcus, S.L., and Miller, L.E. (1984) “Viscoelastic Properties of the Wrist Motor Servo in Man,” Annals of Biomedical Engineering 12: 599–620.

    Article  CAS  PubMed  Google Scholar 

  • Gielen, C.C.A.M. and Houk, J.C. (1987) “A Model of the Motor Servo: Incorporating Nonlinear Spindle Receptor and Muscle Mechanical Properties,” Biol. Cybern. 57: 217–231.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, G.L., Corcos, D.M., and Agarwal, G.C. (1989a) “Organizing Principles for Single-Joint Movements. I. A Speed-Insensitive Strategy,” J. Neurophysiology 62 (3): 342–357.

    CAS  Google Scholar 

  • Gottlieb, G.L., Corcos, D.M., and Agarwal, G.C. (1989b) “Organizing Principles for Single-Joint Movements. II. A Speed-Sensitive Strategy,” J. Neurophysiology 62 (3): 358–368.

    Google Scholar 

  • Hasan, Z. (1983) “A Model of Spindle Afferent Response to Muscle Stretch,” J. Neurophys. 49: 989–1006.

    CAS  Google Scholar 

  • Hasan, Z. and Enoka, R.M. (1985) “Isometric Torque- Angle Relationship and Movement-Related Activity of Human Elbow Flexors: Implications for the Equilibrium-Point Hypothesis,” Exp. Brain Res. 59: 441–450.

    CAS  PubMed  Google Scholar 

  • Hasan, Z. (1986) “Optimized Movement Trajectories and Joint Stiffness in Unperturbed, Inertially Loaded Movements,” Biol. Cybern. 53: 373–382.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, N. (1984) “An Organizing Principle for a Qass of Voluntary Movements,” J. Neuroscience 4: 2745–2754.

    CAS  Google Scholar 

  • Hogan, N. (1984) “Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles,” IEEE Trans. Automatic Control AC-29, no. 8, pp. 681–690.

    Article  Google Scholar 

  • Hogan, N. (1985) “The Mechanics of Multi-Joint Posture and Movement Control,” Biol. Cybern. 52: 315: 331.

    Google Scholar 

  • Hollerbach, J.M. (1982) “Computers, Brains, and the Control of Movement,” Trends Neurosci. 5: 189–192.

    Article  Google Scholar 

  • Hollerbach, J.M. and Flash, T. (1982) “Dynamic Interactions Between Limb Segments During Planar Arm Movement,” Biol. Cybern. 44: 67: 77.

    Google Scholar 

  • Houk, J.C., Crago, P.E., and Rymer, W.Z. (1981) “Function of the Spindle Dynamic Response in Stiffness Regulation — A Predicative Mechanism Provided by Nonlinear Feedback,” Muscle Receptors and Movement, edited by Taylor, A. and Prochazka, A., Macmillan, London.

    Google Scholar 

  • Houk, J.C., and Rymer, W.Z. (1981) “Neural Control of Muscle Length and Tension,” Handbook of Physiology # The Nervous System II, Bethesda, MD, American Physiol. Soc. Sect 1, Vol. II, Chap. 8, pp. 257–323.

    Google Scholar 

  • Houk, J.C., Rymer, W.Z., and Crago, P.E. (1981) “Dependence of Dynamic Responses of Spindle Receptors on Muscle Length and Velocity,” J. Neurophysiology 46: 143–166.

    CAS  Google Scholar 

  • Houk, J.C., Wu, C.H., and Young, K.Y. (1989) “Nonlinear Damping of Limb Motion,” XXXI International Congress of Physiological Sciences, Helsinki, Finland, July, Abs. 533.

    Google Scholar 

  • Huxley, A.F. (1957) “Muscle Structure and Theories of Contraction,” Prog. Biophys. Chem. 7: 257–318.

    Google Scholar 

  • Matthews, P.B.C. (1972) Mammalian Muscle Receptors and Their Central Actions, Williams & Wilkins, Baltimore.

    Google Scholar 

  • McMahon, A. T. (1984) Muscles, Reflexes, and Locomotion, University Park Press, Baltimore.

    Google Scholar 

  • Miller, L.E. (1984) “Reflex Stiffness of the Human Wrist,” M.S. Thesis, Department of Physiology, Northwestern University, Evanston, IL.

    Google Scholar 

  • Mussa-Ivaldi, F.A., Hogan, N., and Bizzi, E. (1985) “Neural, Mechanical, and Geometric Factors Subserving Arm Posture in Humans,” J. Neuroscience 5: 2732–2743.

    CAS  Google Scholar 

  • Mussa-Ivaldi, F.A., Morraso, P., and Zaccaria, R. (1988) “Kinematic Networks: A Distributed Model for Representing and Regularizing Motor Redundancy,” Biol. Cybern. 60: 1–16.

    CAS  PubMed  Google Scholar 

  • Nichols, T.R. and Houk, J.C. (1976) “Improvement in Linearity and Regulation of Stiffness That Results From Actions of Stretch Reflex,” J. Neurophys. 39: 119–142.

    CAS  Google Scholar 

  • Ogada, K, (1970) Modern Control Engineering, Prentice-Hall Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Oguztoreli, M.N. and Stein, R.B. (1976) “The Effects of Multiple Reflex Pathways on the Oscillations in Neuro-MuscularSystems,” J. Math. Biol. 3: 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Polit, A. and Bizzi, E. (1979) “Characteristics of Motor Programs Underlying Arm Movements in Monkeys,” J. Neurophysiology 42: 183–194.

    CAS  Google Scholar 

  • Rack, P.M.H. (1981) “Limitations of Somatosensory Feedback in Control of Posture and Movement,” Handbook of Physiology # The Nervous System II, Bethesda, MD, American Physiol. Soc. Sect. 1, Vol. II, pp. 229–259.

    Google Scholar 

  • Rack, P.M.H. and Westbury, D.R. (1969) “The Effects of Length and Stimulus Rate on Tension in the Isometric Cat Soleus Muscle,” J. Physiol. 204: 443: 460.

    Google Scholar 

  • Stein, R.B. (1982) “What Muscle Variable(s) Does the Nervous System Control in Limb Movements?” Behav. Brain Sci. 5: 535–577.

    Article  Google Scholar 

  • Stein, R.B. (1974) “The Peripheral Control of Movement,” Physiol. Rev. 54: 215–243.

    CAS  PubMed  Google Scholar 

  • Uno, Y., Kawato, M., and Suzuki, R. (1989) “Formation and Control of Optimal Trajectory in Human Multijoint Arm Movement,” Biol. Cybern. 61: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C.H. (1988) “Compliance,” International Encyclopedia of Robotics: Application and Automation, John Wiley and Sons, New York, Vol. I, pp., 192–202.

    Google Scholar 

  • Zahalak, G.I. (1981) “A Distribution — Moment Approximation for Kinetic Theories of Muscular Contraction,” Math. Bioscience 55: 89–114.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Wu, Ch., Houk, J.C., Young, KY., Miller, L.E. (1990). Nonlinear Damping of Limb Motion. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics