Skip to main content

Principles Underlying Movement Organization: Upper Limb

  • Chapter
Multiple Muscle Systems

Abstract

It seems natural to assume that certain fundamental principles underlie the organization and performance of motor behavior. The search for governing principles has spanned many motor systems, ranging from isolated muscle contraction through locomotion in invertebrates and vertebrates, quadrupeds and bipeds, to whole-body posture in humans. More recent attempts to study the fundamental principles of upper-limb function are the topic of PART III of this book. These chapters provide a representative sample of the issues which have been raised and the progress which has been made towards gaining an under-standing of this complex topic and applying that knowledge to the development of assistive devices for rehabilitation of upper-limb motor dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, J.S. (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dynamic. Sys., Meas. & Control, 97: 220–227.

    Article  Google Scholar 

  • Arbib, M.A. (1972) The metaphorical brain: an introduction to artificial intelligence and brain theory., Interscience, New York.

    Google Scholar 

  • Arbib, M. A. and S.-I. Amari (1985) Sensori-Motor Transformations in the Brain (with a Critique of the Tensor Theory of Cerebellum). J. Theor. Biol., 112: 123–155.

    Article  CAS  PubMed  Google Scholar 

  • Atkeson, C.G. (1989) Learning arm kinematics and dynamics. Ann. Rev. Neurosci. 12: 157–183.

    Article  CAS  PubMed  Google Scholar 

  • Atkeson, C.G. and Hollerbach, J.M. (1985) Kinematic features of unrestrained vertical arm movements. J. Neurosci., 5: 2318–2330.

    CAS  PubMed  Google Scholar 

  • Benati, M., Morasso, P. and Tagliasco, V. (1982) The inverse kinematic problem for anthropomorphic manipulator arms. J. Biomech. Eng., 104: 110–113.

    Google Scholar 

  • Bernstein, N. (1967) The co-ordination and regulation of movements. Pergamon Press, New York.

    Google Scholar 

  • Bizzi, E., A. Polit and P. Morasso (1976) “Mechanisms Underlying Achievement of Final Head Position”, J. Neurophysiol., 39: 435–444.

    CAS  PubMed  Google Scholar 

  • Bizzi, E., N. Accomero, W. Chappie and N. Hogan (1984) “Posture Control and Trajectory Formation During Arm Movement”, J. Neurosci., 4: 2738–2744.

    CAS  PubMed  Google Scholar 

  • Bullock, D. and Grossberg, S. (1986) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev., 95: 49–90.

    Article  Google Scholar 

  • Cordo, P.J. and Rymer, W.Z. (1982) Contributions of motor-unit recruitment and rate modulation to compensation for muscle yielding. J. Neurophys., 47: 797–809.

    CAS  Google Scholar 

  • Feldman, A.G. (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture, II: controllable parameters of the muscle. Biophysics 11, 565–578.

    Google Scholar 

  • Feldman, A.G. (1986) Once more on the equilibrium- point hypothesis (X model) for motor control. J. Motor Behav. 18: 17–54.

    CAS  Google Scholar 

  • Fitts, P.M. (1954) The information capacity of the human motor system in controlling the amplitude of the movement. J. Exp. Psychol., 47: 381–391.

    Article  CAS  PubMed  Google Scholar 

  • Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57: 257–274.

    Article  CAS  PubMed  Google Scholar 

  • Flash, T. and N. Hogan (1985) The Coordination of Ann Movements: An Experimentally Confirmed Mathematical Model. J. Neuroscience, 5: 1688–1703.

    CAS  Google Scholar 

  • Freund, H.-J. and Büdingen, H.J. (1978) The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Exper. Brain Res. 31: 1–12.

    CAS  Google Scholar 

  • Gottlieb, G.L., Corcos, D.M. and Agarwal, G.C. (1989) Strategies for the control of voluntary movements with one mechanical degree of freedom. Behav. & Brain Sci., 12: 189–250.

    Article  Google Scholar 

  • Haken, H., J.A.S. Kelso and H. Bunz (1985) A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51: 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, Z. (1986) Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biol Cybern., 53: 373–382.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, Z., Enoka, R.M. and Stuart, D.G. (1985) The interface between biomechanics and neurophysiology in the study of movement: some recent approaches. Exercise and Sport Sci. Rev., 13: 169–234.

    CAS  Google Scholar 

  • Hogan, N. (1982) Control and Coordination of Voluntary Arm Movements, in: Proc. of1982 Amer. Control Conf, M.J. Rabins and Y. Bar-Shalom (eds.) 2: 522–527.

    Google Scholar 

  • Hogan, N. (1984) An Organizing Principle for a Class of Voluntary Movements. J. Neurosci. 4: 2745–2754.

    CAS  PubMed  Google Scholar 

  • Hogan, N. (1985) The mechanics of multi-joint posture and movement. Biol. Cybern., 52: 315–331.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, N., Bizzi, E., Mussa-Ivaldi, S. and Flash, T. (1987) Controlling multi-joint motor behavior. Exerc. and Sport. Sci. Rev., 15: 153–189.

    CAS  Google Scholar 

  • Hollerbach, J.M. (1982) Computers, brains and the control of movement. Trends in Neurosci. 6: 189–192.

    Article  Google Scholar 

  • Houk, J.C. and Rymer, W.Z. (1981) Neural control of muscle length and tension. Handbook of Physiology — The Nervous System II, Chapter 8, pp. 257–323.

    Google Scholar 

  • Jordan, M.L. (1990) Indeterminate Motor Skill Learning Problems. In: M. Jeannerod (ed.), Attention and Performance, XIII, Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Jordan, M. (1988) Supervised learning and systems with excess degrees of freedom. Massachusetts Institute of Technology COINS Technical Report 88 - 27.

    Google Scholar 

  • Kay, B.A., J.A.S. Kelso, E.L. Saltzman and G. Schoner (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J. Exp. Psych.: Human Percep. and Perform., 13: 178–192.

    Article  CAS  Google Scholar 

  • Kay, B.A., N. Hogan, F.A. Mussa-Ivaldi and E.D. Fasse (1989a) Perceiving the Properties of Objects Using Arm Movements: Workspace Dependent Effects. Proc. 11th Ann. Conf. IEEE EMBS, Vol. 11, Part 5.

    Google Scholar 

  • Kay, B.A., N. Hogan, F.A. Mussa-Ivaldi and E.D. Fasse (1989b) Perceived Properties of Objects Using Kinesthetic Sense Depend on Workspace Location. Society for Neuroscience Abstracts.

    Google Scholar 

  • Kawato, M., K. Furukawa and R. Suzuki (1987) A hierarchical Neural-Network Model for Control and Learning of Voluntary Movement. Biol. Cybern., 57: 169–185.

    Article  CAS  PubMed  Google Scholar 

  • Kawato, M., Y. Madea, Y. Uno and R. Suzuki (1990) Trajectory formation of arm movement by cascade neural network model based on the minimum torque change criterion. ATR Technical Report, TR-A- 0056.

    Google Scholar 

  • Kelso, J.A.S. (1984) Phase transitions and critical behavior in human bimanual coordination. Amer. J. of Physiol 43: 1183–1195.

    Google Scholar 

  • Kuperstein, M. (1987) Adaptive visual-motor coordination in multi-joint robots using parallel architecture. IEEE Conf. on Robotics and Automation, pp. 1595–1602.

    Google Scholar 

  • Lestienne, F. (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp. Brain Res., 35: 407–418.

    Article  CAS  PubMed  Google Scholar 

  • Lacquaniti, F., Licata, F. and Soechting, J.F. (1982) The mechanical behavior of the human forearm in response to transient perturbation. Biol. Cybern., 44: 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Marsden, C.D., Obeso, J.A. and Rothwell, J.C. (1983) The function of the antagonist muscle during fast limb movements in man. J. Physiol., 335: 1–13.

    CAS  PubMed  Google Scholar 

  • Morasso, P. (1981) Spatial control of arm movements. Exp. Brain Res., 42: 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Morasso, P. and Mussa-Ivaldi, F.A. (1982) Trajectory formation and handwriting: a computational model. Biol. Cybern. 45: 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi, F.A. Hogan, N. and Bizzi, E. (1985) Neural, mechanical and geometric factors subserving arm posture in humans. J. Neurosci., 5: 2732–2743.

    CAS  PubMed  Google Scholar 

  • Nelson, W.L. (1983) Physical principles for economies of skilled movements. Biol. Cybern. 46: 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, T.R. and Houk, J.C. (1976) Improvements in linearity and regulation of stiffness that results from actions of stretch reflex. J. Neurophys., 39: 119–142.

    CAS  Google Scholar 

  • Pellionisz, A. and Llinis, R. (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neurosci. 4: 323–348.

    Article  CAS  Google Scholar 

  • Poggio, T. and F. Girosi (1990) Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247: 978–982.

    Article  CAS  PubMed  Google Scholar 

  • Raibert, M.H. (1976) A state space model for sensorimotor control and learning. MIT Artif. Intel. Memo No. 351, January.

    Google Scholar 

  • Saltzman, E. (1979) Levels of Sensorimotor Representation. J. Math. Psych., 20: 91–163.

    Article  Google Scholar 

  • Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S. and Quinn, J.T. (1979) Motor output variability: a theory for the accuracy of rapid motor acts. Psychol. Rev., 86: 415–451.

    Article  Google Scholar 

  • Schwartz, A.B., Kettner, R.E. and Georgopoulos, A.P. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J. Neurosci., 8: 2913–2927.

    CAS  PubMed  Google Scholar 

  • Schneider, K. and Zemicke, R.F. (1989) Jeik-cost modulations during the practise of rapid arm movements. Biol. Cybern. 60: 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Seif-Naraghi, A.H. (1989) Control of human arm movements via optimization. Ph.D. Dissertation, Arizona State University.

    Google Scholar 

  • Soechting, J.F. (1982) Does position sense at the elbow reflect a sense of elbow joint angle or one of limb orientation? Brain Res., 248: 392–395.

    Article  CAS  PubMed  Google Scholar 

  • Soechting, J.F. (1984) Effect of target size on spatial and temporal characteristics of a pointing movement in man. Exp. Brain Res., 54: 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Soechting, J.F. and Lacquaniti, F. (1981) Invariant characteristics of a pointing movement in man, J. Neurosci., 1: 710–720.

    CAS  PubMed  Google Scholar 

  • Soechting, J.F., Lacquaniti, F. and Terzuolo, C.A. (1986) Coordination of arm movements in three- dimensional space. Sensorimotor mapping during drawing movement. Neurosci., 17: 295–311.

    Article  CAS  Google Scholar 

  • Soechting, J.F., Dufrense, J.R. and Lacquaniti, F. (1981) Time-varying properties of myotatic response in man during some simple motor tasks. J. Neurophys., 46: 1226–1243.

    CAS  Google Scholar 

  • Stein, R.B. (1982) What muscle variable(s) does the nervous system control in limb movements? Behav. and Brain Sci., 5: 535–577.

    Article  Google Scholar 

  • Uno, Y, M. Kawato, and R. Suzuki (1989) Formation and control of optimal trajectory in multijoint arm movement: minimum torque change model. Biol. Cybern. 61: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • van Sonderen, J.F., Denier van der Gon, J.J. and Gielen, C.C.A.M. (1988) Conditions determining early modification of motor programmes in response to changes in target location. Exp. Brain Res., 71: 320–328.

    Article  PubMed  Google Scholar 

  • Viviani, P. and Terzuolo, C. (1983) The organization of movement in handwriting and typing. Language Production, 2: 103–146.

    Google Scholar 

  • Wadman, W.J., Denier van der Gon, J.J. and Derksen, R.J.A. (1980) Muscle activation patterns for fast goal-directed arm movements. J. Human Movem. Stud., 6: 19–37.

    Google Scholar 

  • Wallace, S.A. An impulse-timing theory for reciprocal muscular activity in rapid, discrete movements. J. Motor Behav., 13: 144–160.

    Google Scholar 

  • Winters, J.M. and Stark, L. (1985) Task-specific second-order movement models are encompassed by an eighth-order nonlinear musculoskeletal model. Proc. IEEE Sys., Man & Cybern., pp. 1111–1115.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Hogan, N., Winters, J.M. (1990). Principles Underlying Movement Organization: Upper Limb. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics