Skip to main content

Abstract

Although the use of ceramic materials is well known in dentistry, their use in medicine as implants is relatively new. The main advantage of ceramics over other implant materials is their “inertness” or “biocompatibility,” which is due to their low chemical reactivity. However, certain ceramics are made reactive so as to induce direct bonding to hard tissues. Some ceramics are also made to be absorbed in vivo after their original function is fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Gitzen (ed.),Alumina as a Ceramic Material, American Ceramic Society, Columbus, Ohio, 1970:

    Google Scholar 

  2. Annual Book of ASTM Standards, Part 46, F603-78, American Society for Testing and Materials, Philadelphia, 1980.

    Google Scholar 

  3. H. Kawahara, M. Hirabayashi, and T. Shikita, Single crystal alumina for dental implants and bone screws,J. Biomed. Mater. Res.14, 597–606, 1980.

    Article  Google Scholar 

  4. H. Kawahara, A. Yamagami, Y. Koda, J. Yokota, H. Sogawa, Y. Kataoka, H. Kobayashi, S. Maehara, and M. Hirabayashi, Bioceram-A new type of ceramic implant,Jpn. Soc. Implant Dent. August 1975.

    Google Scholar 

  5. M. Spraggs and T. Vasilos, Effect of grain size on transverse bend strength of alumina and magnesia,J. Am. Ceram. Soc. 46, 224–228, 1963.

    Article  Google Scholar 

  6. J. T. Frakes, S. D. Brown, and G. H. Kenner, Delayed failure and aging of porous alumina in water and physiological medium,Am. Ceram. Soc. Bull.53, 193–197, 1974.

    Google Scholar 

  7. F. E. Krainess and W. J. Knapp, Strength of a dense alumina ceramic after agingin vitro, J. Biomed. Mater. Res.12, 241–246, 1978.

    Article  Google Scholar 

  8. C. P. Chen and W. J. Knapp, Fatigue fracture of an alumina ceramic at several temperatures,in: Fracture Mechanics of Ceramics, Volume 2, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (ed.), pp. 691–707, Plenum Press, New York, 1974.

    Google Scholar 

  9. J. E. Ritter, Jr., D. C. Greenspan, R. A. Palmer, and L. L. Hench, Use of fracture of an alumina and Bioglass-coated alumina,J. Biomed. Mater. Res.13, 251–263, 1979.

    Article  Google Scholar 

  10. C. G. Trantina, Brittle fracture and subcritical crack growth in a ceramic structure, in:Fracture, Volume 3, D. M. R. Taphn (ed.), pp. 921–927, University of Waterloo, Waterloo, Canada, 1977.

    Google Scholar 

  11. M. R. Urist, Bone histogenesis and morphogenesis in implants of demineralized enamel and dentin,J. Oral Surg.29, 88–102, 1971.

    Google Scholar 

  12. A. S. Posner, A. Perloff, and A. D. Diorio, Refinement of the hydroxyapatite structure,Acta Crhstallogr.11, 308–309, 1958.

    Article  Google Scholar 

  13. R. A. Young and J. C. Elliot, Atomic scale bases for several properties of apatites,Arch. Oral Biol.11, 699–707, 1966.

    Article  Google Scholar 

  14. D. McConell,Apatite: Its Crvstal Chemistry, Mineralogy, Utilization, and Biologic Occurrence, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  15. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. P. Kay, and H. Doremus, Hydroxyapatite synthesis and characterization in dense polycrystalline form,J. Mater. Sci.11, 2027–2035, 1976.

    Article  Google Scholar 

  16. K. Kato, H. Aoki, T. Tabata, and M. Ogiso, Biocompatibility of apatite ceramics in mandibles,Biomater. Med. Devices Artif. Organs 7, 291 - 297, 1979.

    Google Scholar 

  17. D. E. Grenoble, The elastic properties of hard tissues and apatites,J. Biomed. Mater. Res. 6, 221–233, 1972.

    Article  Google Scholar 

  18. R. S. Gilmore, R. P. Pollack, and J. L. Katz, Elastic properties of bovine dentine and enamel,Arch. Oral Biol.15, 787–796, 1970.

    Article  Google Scholar 

  19. F. Gaynor Evans,Mechanical Properties of Bones, p. 164, Thomas, Springfield, III., 1973.

    Google Scholar 

  20. A. M. Torgalkar, A resonance frequency technique to determine elastic modulus of hydroxyapatite,J. Biomed. Mater. Res.13, 907–920, 1979.

    Article  Google Scholar 

  21. P. Decheyne and K. de Groot, In vivo surface activity of a hydroxyapatite alveolar bone substitute,J. Biomed. Mater. Res.15, 441–445, 1981.

    Article  Google Scholar 

  22. R. E. Holmes, Bone regeneration within a coralline hydroxyapatite implant,Plast. Reconstr. Surg.63, 626–633, 1979.

    Article  Google Scholar 

  23. E. A. Monroe, W. Votaya, D. B. Bass, and J. McMullen, New calcium phosphate ceramic material for bone and tooth implants,J. Dent. Res.50, 860–861, 1971.

    Article  Google Scholar 

  24. S. Niwa, K. Sawai, S. Takahashie, H. Tagai, M. Ono, and Y. Fukuda, Experimental studies on the implantation of hydroxyapatite in the medullary canal of rabbits,Transactions, First World Biomaterials Congress, Baden, Austria, April 8–12, 1980.

    Google Scholar 

  25. L. L. Hench, R. K. Splinter, and W. C. Allen, Bonding mechanisms at the interface of ceramic prosthetic materials,J. Biomed. Mater. Symp.2, 117–141, 1971.

    Article  Google Scholar 

  26. E. D. Eanes and A. S. Posner, Kinetics and mechanisms of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite,Trans. N.Y. Acad. Sci.28, 233–241, 1965.

    Google Scholar 

  27. E. Hayek and H. Newesely, Pentacalcium monohydroxyorthophosphate,Inorg. Synth.7, 63–65, 1963.

    Article  Google Scholar 

  28. D. J. Greenfield and E. D. Eanes, Formation chemistry of amorphous calcium phosphates prepared from carbonate-containing solutions,Calcif. Tissue Res.9, 152–162, 1972.

    Article  Google Scholar 

  29. T. Kijima and M. Tsutsumi, Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite,J. Am. Ceram. Soc.62, 954–960, 1979.

    Article  Google Scholar 

  30. P. W. McMillan,Glass-Ceramics, 2nd ed., Academic Press, New York, 1979.

    Google Scholar 

  31. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann,Introduction to Ceramics, 2nd ed., p. 368, Wiley, New York, 1976.

    Google Scholar 

  32. L. L. Hench and H. A. Paschall, Direct chemical bond of bioactive glass-ceramic materials to bone and muscle,J. Biomed. Mater. Res. Symp.2, 5–42, 1973.

    Google Scholar 

  33. G. Piotrowski, L. L. Hench, W. C. Allen, and G. J. Miller, Mechanical studies of bone-Bioglass interfacial bond,J. Biomed. Mater. Symp.6, 47–61, 1975.

    Article  Google Scholar 

  34. M. Ogino, F. Ohuchi, and L. L. Hench, Compositional dependence of the formation of calcium phosphate film on Bioglass,J. Biomed. Mater. Res. 14, 55–64, 1980.

    Article  Google Scholar 

  35. B. A. Blencke, H. Bromer, and K. K. Deutscher, Compatibility and long-term stability of glass-ceramic implants,J. Biomed. Mater. Res. 12, 307–318, 1978.

    Article  Google Scholar 

  36. G. Muller, Glass ceramics as composite fillers,J. Dent. Res. 53, 1342–1345, 1974.

    Article  Google Scholar 

  37. O.M. Wyatte and D. Dew-Hughes,Metals, Ceramics, and Polymers, p. 267, Cambridge University Press, London, 1974.

    Google Scholar 

  38. C. A. Beckham, T. K. Greenlee, Jr., and A. R. Crebo, Bone formation at a ceramic implant interface,Calcif. Tissue Res.8, 165–171, 1971.

    Article  Google Scholar 

  39. W. Hennig, B. A. Blencke, H. Bromer, K. K. Deutscher, A. Gross, and W. Ege, Investigation with bioactivated polymethacrylates,J. Biomed. Mater. Res.13, 89–99, 1979.

    Article  Google Scholar 

  40. P. Griss, D. C. Greenspan, G. Heimke, B. Krenpien, R. Buchinger, L. L. Hench, and G. Jentchura, Evaluation of a Bioglass-coated A12O3total hip prosthesis in sheep,J. Biomed. Mater. Res. Symp.7, 511–518,1976.

    Article  Google Scholar 

  41. S. F. Hulbert and F. A. Young (ed.),Use of Ceramics in Surgical Implants, Gordon & Breach, New York, 1978.

    Google Scholar 

  42. T. L. Bridges, A Basic Investigation into the Potential Use of Titanium Dioxide as a Component of the Cardiovascular System, M. S. thesis, Clemson University,1970.

    Google Scholar 

  43. J.J. Klawitter, A Basic Investigation of Bone Growth into a Porous Ceramic Material, Ph.D. thesis, Clemson University,1970.

    Google Scholar 

  44. J. J.Klawitter and S. F. Hulbert, Application of porous ceramics for the attachment of load bearing internal orthopedic applications, J. Biomed. Mater. Res. Symp.2, 161–229, 1972.

    Google Scholar 

  45. G. S.Schnittgrund, G. H. Kenner, and S. D. Brown,In vivoandin vitrochanges in strength of orthopedic calcium aluminate,J. Biomed. Mater. Res. Symp.4, 435–452, 1973.

    Article  Google Scholar 

  46. T. D. Driskell, C. R. Hassler, and L. McCoy, Significance of resorbable bioceramics in the repair of bone defects,Annv. Conf. Eng. Med. Biol.15, 199, 1973.

    Google Scholar 

  47. H. U. Cameron, I. Macnab, and R. M. Pilliar, Evaluation ofabiodegradable ceramic,J. Biomed. Mater. Res.11, 179–186, 1977.

    Article  Google Scholar 

  48. G. A. Graves and R. L. Hentrich, Resorbable ceramic implants,J. Biomed. Muter. Res. Symp.2, 91–115, 1972.

    Google Scholar 

  49. J. B. Park, A. F. von Recum, G. H. Kenner, B. J. Kelly, W. W. Coffeen, and M. F. Grether, Piezoelectric ceramics: A feasibility study,J. Biomed. Muter. Res.14, 269–277, 1980.

    Article  Google Scholar 

  50. J.B. Park, B. J.Kelly, A. F. von Recum, G. H. Kenner, W. W. Coffeen, and M. F. Grether, Piezoelectric ceramic implants:In vivoresults,J. Biomed. Muter. Res.15, 103–110, 1981.

    Article  Google Scholar 

  51. J. C.Bokros, Deposition structure and properties of pyrolytic carbon, in:Chemistry and Physics of Carbon, P. L. Walker (ed.), Volume 5 pp., 70–81,Dekker, New York,1969.

    Google Scholar 

  52. J. C. Bokros, L. D. LaGrange, and G J. Schoen, Control of structure of carbon for use in bioengineering, in:Chemistry and Physics of Carbon, P.L. Walker (ed.), Volume9, pp. 103–171, Dekker, New York, 1972.

    Google Scholar 

  53. E. I. Shobert, II,Carbon and Graphite, Academic Press, New York, 1964.

    Google Scholar 

  54. H. P. Boehm, Funktionelle Gruppen an Festkorper-Oberflachen,Angew. Chem.78, 617–652, 1966.

    Article  Google Scholar 

  55. J. L. Kaae, Structure and mechanical properties of isotropic pyrolytic carbon deposited below 1600°C,J. Nucl. Mater.38, 42–50, 1971.

    Article  Google Scholar 

  56. H. S. Shim and A. D. Haubold, The fatigue behavior of vapor deposited carbon films,Biomater. Med. Devices Artif. Organs 8, 333–344, 1980.

    Google Scholar 

  57. P. G. Rose, F. Gerstenberger, U. Gruber, W. Loos, D. Wolter, and R. Neugebauer, New aspects of the design and application of carbon fibre reinforced carbon for prostheticdevices,Transactions, First World Biomaterials Congress, p. 1.6, Baden, Austria, April 8–12, 1980.

    Google Scholar 

  58. H. Nruckman, H. J. Mauer, K. J. Huttinger, H. Rettig, and U. Weber, New carbon materials for joint prostheses,Transactions, First World Biomaterials Congress, p. 1.7, Baden, Austria, April 8–12, 1980.

    Google Scholar 

  59. D. Adams and D. F. Williams, Carbon fiber-reinforced carbon as a potential implant material,J. Biomed. Mater. Res.12, 35–42, 1978.

    Article  Google Scholar 

  60. J. C. Bokros, R. J. Atkins, H. S. Shim, A. D. Haubold, and N. K. Agarwal, Carbon in prosthetic devices, in:Petroleum Derived Carbons,M.L. Deviney and T. M. O’Grady (ed.), pp. 237–265, American Chemical Society, Washington, D.C., 1976.

    Chapter  Google Scholar 

  61. J. L. Nilles and M. Lapitsky, Biomechanical investigations of bone-porous carbon and porous metal interfaces,J. Biomed. Mater. Res. Symp.4, 63–84, 1973.

    Article  Google Scholar 

  62. C. L. Stanitski and V. Mooney, Osseous attachment to vitreous carbons,J. Biomed. Mater. Res. Symp.4, 97–108, 1973.

    Article  Google Scholar 

  63. V. Mooney, P. K. Predecki, J. Renning, and J. Gray, Skeletal extension of limb prosthetic attachments-Problems in tissue reaction,J. Biomed. Mater. Res. Symp.2, 143–159, 1971.

    Article  Google Scholar 

  64. J. Benson, Elemental carbon as a biomaterial,J. Biomed. Mater. Res. Symp.2, 41–47, 1971.

    Article  Google Scholar 

  65. A. D. Haubold, H. S. Shim, and J. C. Bokros, Carbon cardiovascular devices, in:Assisted Circulation,F. Unger (ed.), pp. 520–532, Academic Press, New York, 1979.

    Google Scholar 

  66. F. C. Cowland and J. C. Lewis, Vitreous carbon-A new form of carbon,J. Mater. Sci.2, 507–512, 1967.

    Article  Google Scholar 

  67. R. M. Gill,Carbon Fibres in Composite Materials, Butterworths, London, 1972.

    Google Scholar 

Bibliography

  • J. C. Bokros; R. J. Atkins, H. S. Shim, A. D. Haubold, and N. K. Agarwal, Carbon in prosthetic devices, in: PetroleumDerived Carbons,M.L. Deviney and T. M. O’Grady (ed.), American Chemical Society, Washington, D.C., 1976.

    Google Scholar 

  • J. J. Gilman, The nature of ceramics, in: Materials, D. Flanagen et al. (ed.), Freeman, San Francisco, 1967.

    Google Scholar 

  • G. W. Hastings and D. F. Williams (ed.),Mechanical Properties of Biomaterials, Part 3, pp. 207–274, Wiley, New York, 1980.

    Google Scholar 

  • S. F. Hulbert and F. A. Young (ed.),Use of Ceramics in Surgical Implants, Gordon & Breach, New York 1978.

    Google Scholar 

  • S. F. Hulbert, F. A. Young, and D. D. Moyle (ed.),J. Biomed. Mater. Res. Symp.2, 1972.

    Google Scholar 

  • W. D. Kingery, H. Bowen, and D. R. Uhlmann,Introduction to Ceramics, 2nd ed., Wiley, New York, 1976.

    Google Scholar 

  • F. Norton,Elements of Ceramics, 2nded., Addison-Wesley, Reading, Mass., 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Park, J.B. (1984). Ceramic Implant Materials. In: Biomaterials Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2769-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2769-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9710-9

  • Online ISBN: 978-1-4613-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics