Skip to main content

Abstract

As mentioned in Chapter 1, metals have been used in various forms as implants. The first metal developed specifically for implant use was the “Sherman vanadium steel” from which fracture plates and screws were made.(1) Most metals used for manufacturing implants such as Fe, Cr, Co, Ni, Ti, Ta, Mo, and W can be tolerated by the body in minute amounts and sometimes are essential in red blood cell function (Fe) or synthesis of vitamin B12 (Co) but cannot be tolerated in large amounts.(2) Thebiocompatibility of the implant metals is of considerable concern because they can be corroded in the hostile environment of the body. As a consequence of corrosion, the material itself is wearing away and thus weakening the implant, and more importantly the corrosion products are released into the surrounding tissues, resulting in undesirable effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. D. Sherman, Vanadium steel plates and screws,Surg. Gynecol. Obstet.14, 629–634, 1912.

    Google Scholar 

  2. E. Browning,Toxicity of Industrial Metals, 2nd ed., Butterworths, London, 1969.

    Google Scholar 

  3. D. C. Ludwigson, Today’s prosthetic metals, are they satisfactory for surgical use?,J. Metals 1964, 226–229, 1964.

    Google Scholar 

  4. D. I. Bardos, Stainless steels in medical devices, in:Handbook of Stainless Steels, D. Peckner and I. M. Bernstein (ed.), pp. 1–10, McGraw-Hill, New York, 1977.

    Google Scholar 

  5. M. G. Fontana and N. O. Greene,Corrosion Engineering, pp. 163–168, McGraw-Hill, New York, 1967.

    Google Scholar 

  6. F. B. Puckering (ed.),The Metallurgical Evolution of Stainless Steels, pp. 1–42, American Society for Metals and the Metals Society, Metals Park, Ohio, 1979.

    Google Scholar 

  7. Annual Book of ASTM Standards, Part 46, American Society for Testing and Materials, Philadelphia, 1980.

    Google Scholar 

  8. F. H. Keating,Chromium-Nickel Austenitic Steels, Butterworths, London, 1956.

    Google Scholar 

  9. A. M. Weinstein, W. P. Spires, Jr., J. J. Klawitter, A. J. T. Clemow, and J. O. Edmunds, Orthopedic implant retrieval and analysis study, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 212–228, American Society for Testing and Materials, Philadelphia, 1979.

    Chapter  Google Scholar 

  10. H. S. Dobbs and J. T. Scales, Fracture and corrosion in stainless steel hip replacement stems, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 245–258, American Society for Testing and Materials, Philadelphia, 1978.

    Google Scholar 

  11. L. E. Sloter and H. R. Piehler, Corrosion-fatigue performance of stainless steel hip nails—Jewett type, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 173–192, American Society for Testing and Materials, Philadelphia, 1979.

    Chapter  Google Scholar 

  12. D. D. Moyle,Biomaterials, lecture notes of BioE801 course, Clemson University, 1979.

    Google Scholar 

  13. Source Book on Industrial Alloy and Engineering Data, p. 223, American Society for Metals, Metal Park, Ohio, 1978.

    Google Scholar 

  14. D. C. Mears,Materials and Orthopaedic Surgery, Williams & Wilkins, Baltimore, 1979.

    Google Scholar 

  15. C. J. Smithells (ed.),Metals Reference Book, p. 549, Butterworths, London, 1976.

    Google Scholar 

  16. Micro-grain Zimaloy, Technical Report, Zimmer-USA, Warsaw, Ind., 1978.

    Google Scholar 

  17. Vitallium FHS Forged Alloy (High Strength), Technical Monograph, Howmedica Inc., Rutherford, N.J., 1979.

    Google Scholar 

  18. G. Smith, Cobalt-nickel base alloys containing chromium and molybdenum, U.S. Patent No. 3,356,542, December 6, 1967.

    Google Scholar 

  19. T. M. Devine and J. Wulff, Cast vs. wrought cobalt-chromium surgical implant alloys,J. Biomed. Mater. Res.9, 151–167, 1975.

    Article  Google Scholar 

  20. Biophase Implant Material, Technical Information Publication 3846, p. 7, Richards Manufacturing Co., Memphis, Tenn., 1980.

    Google Scholar 

  21. M. Semlitch, Properties of wrought CoNiCrMo alloy Protasul-10, a highly corrosion and fatigue resistant implant material for joint endoprostheses,Eng. Med.9, 201–207, 1980.

    Article  Google Scholar 

  22. B. C. Syrett and E. E. Davis, Crevice corrosion of implant alloys—A comparison ofin vitroandin vivostudies, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 229–244, American Society for Testing and Materials, Philadelphia, 1979.

    Chapter  Google Scholar 

  23. J. H. Dumbleton and J. Black,An Introduction to Orthopedic Materials, p. 178, Thomas, Springfield, III., 1975.

    Google Scholar 

  24. P. Sury and M. Semlitch, Corrosion behavior of cast and forged cobalt-based alloys for double-alloy joint endoprostheses,J. Biomed. Mater. Res.12, 723–741, 1978.

    Article  Google Scholar 

  25. J. B. Park,Biomaterials: An Introduction, p. 202, Plenum Press, New York, 1979.

    Google Scholar 

  26. R. D. Crowninshield, R. A. Brand, and R. C. Johnson, An analysis of femoral stem design in total hip arthroplasty,Trans. 25th Annv. Orthop. Res. Soc.4, 33, 1979.

    Google Scholar 

  27. J. J. Klawitter, S. D. Cook, A. M. Weinstein, and S. Das, The effect of elastic modulus and trabecular structure on stress distribution around dental implants,J. Dent. Res.58, 410, 1979.

    Google Scholar 

  28. R. R. Tarr, J. L. Lewis, D. Jaycox, A. Sarmiento, J. Schmidt, and L. L. Latta, Effect of materials, stem geometry, and collar-calcar contact on stress distribution in proximal femur with total hip,Trans. 25th Annv. Orthop. Res. Soc.4, 34, 1979.

    Google Scholar 

  29. P. Townsend and R. Diamond, Aspects of prosthetic system,Trans. 25th Annv. Orthop. Res. Soc.4, 196, 1979.

    Google Scholar 

  30. R. T. Booth, L. E. Beaton, and H. A. Davenport, Reaction of bone to multiple metallic implants,Surg. Gynecol. Obstet.71, 598–602, 1940.

    Google Scholar 

  31. R. I. Jaffee and N. E. Promisel (ed.),The Science, Technology, and Application of Titanium, Pergamon Press, Elmsford, N.Y., 1968.

    Google Scholar 

  32. R. J. Solar, S. R. Pollack, and E. Korostoff,In vitrocorrosion testing of titanium surgical implant alloys: An approach to understanding titanium release from implants,J. Biomed. Mater. Res.13, 217–250, 1979.

    Article  Google Scholar 

  33. G. M. Down, The use of titanium as an implant material,Eng. Med.2, 58–63, 1972.

    Article  Google Scholar 

  34. G. H. Hille, Titanium for surgical implants,J. Mater.1, 373–383, 1966.

    Google Scholar 

  35. C. J. E. Smith and A. N. Hughes, The corrosion fatigue behavior of a titanium-6 w/o aluminum-4 w/o vanadium alloy,Eng. Med.7, 158–171, 1978.

    Article  Google Scholar 

  36. E. G. C. Clarke and J. Hickman, An investigation into the correlation between the electrical potentials of metals and their behavior in biological fluids,J. Bone Jt. Surg.35B, 467–473, 1953.

    Google Scholar 

  37. G. Meachim, Histological interpretation of tissue changes adjacent to orthopaedic implants, in:Biocompatibility of Implant Materials, D. F. Williams (ed.), pp. 120–127, Sector, London, 1976.

    Google Scholar 

  38. L. P. Jahnke, Titanium in jet engines, in:The Science, Technology, and Application of Titanium, R. I. Jaffee and N. E. Promisel (ed.), pp. 1099–1115, Pergamon Press, Elmsford, N.Y, 1968.

    Google Scholar 

  39. J. T. McFadden, Tissue reactions to standard neurosurgical metallic implants,J. Neurosurg.26, 598–603, 1972.

    Google Scholar 

  40. J. Kruger, Fundamental aspects of the corrosion of metallic implants, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 107–126, American Society for Testing and Materials, Philadelphia, 1979.

    Chapter  Google Scholar 

  41. C. A. Zapffe,Stainless Steels, American Society for Metals, Metals Park, Ohio, 1949.

    Google Scholar 

  42. A. B. Ferguson, Jr., P. G. Laing, and E. S. Hodge, Ionization of metal implants in living tissue,J. Bone Jt. Surg.42A, 77–90, 1960.

    Google Scholar 

  43. M. Pourbaix,Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Elmsford, N.Y., 1966.

    Google Scholar 

  44. A. Comet, D. Muster, and J. H. Jaeger, Fatigue-corrosion of endoprostheses titanium alloys,Biomat. Med. Devices Artif. Organs7, 155–167, 1979.

    Google Scholar 

  45. H. J. Grover, Metal fatigue in some orthopedic implants,J. Mater.1, 413–424, 1966.

    Article  Google Scholar 

  46. D. F. Williams and R. Roaf,Implants in Surgery, Saunders, Philadelphia, 1973.

    Google Scholar 

Bibliography

  • L. V. Azaroff,Introduction to Solids, Chapters 4 and 5, McGraw-Hill, New York, 1960.

    Google Scholar 

  • C. O. Bechtol, A. B. Ferguson, and P. G. Laing,Metals and Engineering in Bone and Joint Surgery, Balliere, Tindall & Cox, London, 1959.

    Google Scholar 

  • J. H. Dumbleton and J. Black,An Introduction to Orthopedic Materials, Chapter 9, Thomas, Springfield, III., 1975.

    Google Scholar 

  • M. G. Fontana and N. O. Greene,Corrosion Engineering, McGraw-Hill, New York, 1967.

    Google Scholar 

  • A. G. Guy,Physical Metallurgy for Engineers, Addison-Wesley, Reading, Mass., 1962.

    Google Scholar 

  • B. Harris and A. R. Bunsell,Structure and Properties of Engineering Materials, Chapters 7–9, Longmans, London, 1977.

    Google Scholar 

  • S. N. Levine (ed).Material in Biomedical Engineering,Ann. N.Y. Acad. Sci. 1461968.

    Google Scholar 

  • D. C. Mears,Materials and Orthopaedic Surgery, Chapter 5, Williams & Wilkins, Baltimore, 1979.

    Google Scholar 

  • B. C. Syrett and A. Acharya (ed.),Corrosion and Degradation of Implant Materials, ASTM STP 684, American Society for Testing and Materials, Philadelphia, 1979.

    Google Scholar 

  • L. H. Van Vlack,A Textbook of Materials Technology, Chapters 3-6, Addison-Wesley, Reading, Mass., 1973.

    Google Scholar 

  • L. H. Van Vlack,Materials Science for Engineers, Chapters 6 and 22, Addison-Wesley, Reading, Mass., 1970.

    Google Scholar 

  • D. F. Williams and R. Roaf,Implants in Surgery, Chapters 6 and 8, Saunders, Philadelphia, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Park, J.B. (1984). Metallic Implant Materials. In: Biomaterials Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2769-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2769-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9710-9

  • Online ISBN: 978-1-4613-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics