Skip to main content

Structure-Property Relationships of Biological Materials

  • Chapter
Biomaterials Science and Engineering

Abstract

The major difference between biological materials and biomaterials (implants) isviability. There are other important differences that distinguish living materials from artificial replacements. First, most biological materials are continuously bathed with body fluids, most of which are water as given in Table 6-1. Exceptions are the specialized surface layers of skin, hair, nails, hooves, and the enamel of teeth. Second, most biological materials can be considered as composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Black,Biological Performance of Materials, Dekker, New York, 1981.

    Google Scholar 

  2. M. Chvapil,Physiology of Connective Tissue, Chapter 2, Butterworths, London, 1967.

    Google Scholar 

  3. J. T. Triffit, The organic matrix of bone tissue, in:Fundamental and Clinical Bone Physiology, M. R. Urist (ed.), Chapter 3, Lippincott, Philadelphia, 1980.

    Google Scholar 

  4. Y. C. Fung,Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  5. B. G. King and M. J. Showers,Human Anatomy and Physiology, Saunders, Philadelphia, 1963.

    Google Scholar 

  6. H. J. Hohling, B. A. Ashton, and H. D. Koster, Quantitative electron microscope investigation of mineral nucleation in collagen,Cell Tissue Res.148, 11–26, 1974.

    Article  Google Scholar 

  7. K. Pierkarski, Structure, properties and rheology of bone, in:Orthopaedic Mechanics: Procedures and Devices, D. N. Ghista and R. Roaf (ed.), Chapter 7, Academic Press, New York, 1978.

    Google Scholar 

  8. H. Yamada,Strength of Biological Materials, Williams & Wilkins, Baltimore, 1970.

    Google Scholar 

  9. F. G. Evans and M. Lebow, The strength of human compact bone as revealed by engineering technics,Am. J. Surg.83, 326 - 331, 1952.

    Article  Google Scholar 

  10. J. H. McElhaney, Dynamic response of bone and muscle tissue,J. Appl. Physiol.21, 1231–1236, 1966.

    Google Scholar 

  11. J. D. Currey, What is bone for?—Property-function relationships in bone, in:Mechanical Properties of Bone, S. C. Cowin (ed.), pp. 13–26, ASME, New York, 1981.

    Google Scholar 

  12. A. H. Burstein, J. M. Zika, K. G. Heiple, and L. Klein, Contribution of collagen and mineral to the elastic-plastic properties of bone,J. Bone Jt. Surg.57A, 956–961, 1975.

    Google Scholar 

  13. S. L.-Y. Woo, W. H. Akeson, R. D. Coutts, L. Rutherford, D. Doty, G. F. Jemmott, and D. Amiel, A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness,J. Bone Jt. Surg.58A, 190–195, 1976.

    Google Scholar 

  14. J. Wolff,Das Gesetz der Transformation der Krochen, Hirchwild, Berlin, 1892.

    Google Scholar 

  15. W. Starkebaum, S. R. Pollack, and E. Korostoff, Microelectric studies of stress-generated potentials in four-point bending of bone,J. Biomed. Mater. Res.3, 729–751, 1979.

    Article  Google Scholar 

  16. C. T. Brighton, Z. B. Friedenberg, and J. Black, Evaluation of the use of constant direct current in the treatment of nonunion, in:Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, and S. R. Pollack (ed.), pp. 519–545, Grune & Stratton, New York, 1979.

    Google Scholar 

  17. C. Eriksson, Streaming potentials and other water-dependent effects in mineralized tissue,Ann. N.Y. Acad. Sci.238, 321–338, 1974.

    Article  Google Scholar 

  18. A. Y. Ketenjian and C. Arsenis, Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage,Clin. Orthop. Relat. Res.107, 266–273, 1975.

    Article  Google Scholar 

  19. M. R. Urist (ed.),Fundamental and Clinical Bone Physiology, Lippincott, Philadelphia, 1980.

    Google Scholar 

  20. S. C. Cowin, Continuum models of the adaptation of bone stress, in:Mechanical Properties of Bone, S. C. Cowin (ed.), pp. 193–210, ASME, New York, 1981.

    Google Scholar 

  21. J. Gross, Collagen,Sci. Am.204, 121–130, 1961.

    Article  Google Scholar 

  22. W. Bloom and D. W. Fawcett,A Textbook of Histology, 9th ed., Saunders, Philadelphia, 1968.

    Google Scholar 

  23. A. J. Bailey, C. M. Peach, and L. J. Fawler, Biosynthesis of intermolecular cross-links in collagen, in:The Chemistry and Molecular Biology on the Intracellular Matrix, Volume 1, E. A. Balazs (ed.), pp. 385–404, Academic Press, New York, 1970.

    Google Scholar 

  24. S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline,Mechanical Design in Organisms, Arnold, London, 1976.

    Google Scholar 

  25. P. Mason and B. J. Rigby, Thermal transitions in collagen,Biochim. Biophys. Acta 66, 448–450, 1963.

    Article  Google Scholar 

  26. B. J. Rigby, N. Hiraci, J. D. Spikes, and H. Eyring, The mechanical properties of rat tail tendon,J. Gen. Physiol.43, 265–283, 1959.

    Article  Google Scholar 

  27. G. W. Becker, Stress relaxation of polyethylene,Kolloid Z.175, 99–110, 1961.

    Article  Google Scholar 

  28. C. H. Daly, The Biomechanical Characteristics of Human Skin, Ph.D. thesis, University of Strathclyde, Scotland, 1966.

    Google Scholar 

  29. G. L. Wilkes, I. A. Brown, and R. H. Wildnauer, The biochemical properties of skin,CRC Crit. Rev. Bioeng.1, 453–495, 1973.

    Google Scholar 

  30. P. S. Walker, J. Sikorski, D. Downson, M. Longfield, and V. Wright, Lubrication mechanism in human joints, in:Lubrication and Wear in Joints, V. Wright (ed.), pp. 49–61, Lippincott, Philadelphia, 1969.

    Google Scholar 

  31. J. McAll, Load deformation response of the microstructure of articular cartilage, in:Lubrication and Wear in Joints, V. Wright (ed.), pp. 39–48, Lippincott, Philadelphia, 1969.

    Google Scholar 

  32. A. S. Hoffman, A critical evaluation of the application of rubber elasticity principles to the study of structural proteins such as elastin, in:Biomaterials, A. L. Bement, Jr. (ed.), pp. 285–312, University of Washington Press, Seattle, 1971.

    Google Scholar 

  33. C. A. J. Hoeve and P. J. Flory, Elastic properties of elastin,J. Am. Chem. Soc.80, 6523–6526, 1958.

    Article  Google Scholar 

  34. D. Volpin and A. Ciferri, Thermoelasticity of elastin,Nature (London) 225, 382, 1970.

    Article  Google Scholar 

  35. T. Weis-Fogh and S. O. Andersen, New molecular model for long-range elasticity of elastin,Nature (London) 227, 718–721, 1970.

    Article  Google Scholar 

  36. R. D. Harkness, Mechanical properties of collageneous tissues, in:Treatise on Collagen, B. S. Gould (ed.), Volume 2, Part A, Chapter 6, Academic Press, New York, 1968.

    Google Scholar 

  37. D. H. Bergel, The static elastic properties of the arterial wall,J. Physiol. (London) 156, 445–475, 1961.

    Google Scholar 

  38. A. C. Burton,Physiology and Biophysics of Circulation, Chapter 7, Year Book Medical Publishers, Chicago, 1965.

    Google Scholar 

  39. Y. C. Fung, N. Perrone, and M. Anliker (ed.)Biomechanics: Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, N.J., 1972.

    Google Scholar 

  40. D. R. Veronda and R. A. Westmann, Mechanical characterization of skin—Finite deformities,J. Biomech.3, 111–124, 1970.

    Article  Google Scholar 

  41. J. D. C. Crisp, Properties of tendon and skin, in:Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (ed.), pp. 141–179, Prentice-Hall, Englewood Cliffs, N.J., 1972.

    Google Scholar 

  42. T. Azuma and M. Hasegawa, Distensibility of the vein: From the architectural view point,Biorheology 10, 469–479, 1973.

    Google Scholar 

  43. A. S. Hoffman, L. A. Grande, P. Gibson, J. B. Park, C. H. Daly, and R. Ross, Preliminary studies on mechanochemical-structure relationships in connective tissues using enzymolysis techniques, in:Perspectives of Biomedical Engineering, R. M. Kenedi (ed.), pp. 173–176, University Park Press, Baltimore, 1972.

    Google Scholar 

  44. J. B. Park,Biomaterials: An Introduction, Plenum Press, New York, 1979.

    Google Scholar 

Bibliography

  • R. Barker,Organic Chemistry of Biological Compounds, Chapters 4 and 5, Prentice-Hall, Englewood Cliffs, N.J., 1971.

    Google Scholar 

  • J. Black,Biological Performance of Materials, Dekker, New York, 1981.

    Google Scholar 

  • S. C. Cowin (ed.),Mechanical Properties of Bone, ASME, New York, 1981.

    Google Scholar 

  • H. R. Eiden (ed.),Biophysical Properties of the Skin, Wiley, New York, 1971.

    Google Scholar 

  • H. Fleisch, H. J. J. Blackwood, and M. Owen (ed.),Calcified Tissue, Springer-Verlag, Berlin, 1966.

    Google Scholar 

  • K. H. Gustavson,The Chemistry of Reactivity of Collagen, Academic Press, New York, 1956.

    Google Scholar 

  • D. A. Hall,The Chemistry of Connective Tissue, Thomas, Springfield, III., 1961.

    Google Scholar 

  • R. M. Kenedi (ed.),Perspectives in Biomedical Engineering, University Park Press, Baltimore, 1973.

    Google Scholar 

  • H. Kraus, On the mechanical properties and behavior of human compact bone,Adv. Biomed. Eng. Med. Phys.2, 169–204, 1968.

    Google Scholar 

  • J. B. Park, C. H. Daly, and A. S. Hoffman, The contribution of collagen to the mechanical response of canine artery at low strains, in:Frontiers of Matrix Biology?, Volume 3, A. M. Robert and L. Robert (ed.), pp. 218–233, Karger, Basel, 1976.

    Google Scholar 

  • G. N. Ramachandran (ed.),Treatise on Collagen: Volume 2A, Chapter 6, “Mechanical Properties of Collagenous Tissues,” by R. D. Harkness; Volume 2B, Chapter 3, “Organization and Structure of Bone,” by M. J. Glimcher and S. M. Krane; Volume 1, Chapter 1, “Composition of Collagen and Allied Proteins,” by J. E. Eastoe, Academic Press, New York, 1967, 1968.

    Google Scholar 

  • J. W. Remington (ed.),Tissue Elasticity, American Physiological Society, Washington, D.C., 1957.

    Google Scholar 

  • A. Viidik, Functional properties of collagenous tissues,Int. Rev. Connect. Tissue Res.6, 127–215, 1973.

    Google Scholar 

  • I. Zipkin (ed.),Biological Mineralization, Wiley, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Park, J.B. (1984). Structure-Property Relationships of Biological Materials. In: Biomaterials Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2769-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2769-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9710-9

  • Online ISBN: 978-1-4613-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics