Skip to main content

Polymeric Implant Materials

  • Chapter
Biomaterials Science and Engineering

Abstract

Polymeric materials have a wide variety of applications for implantation since they can be easily fabricated into many forms: fibers, textiles, films, and solids. Polymers bear a close resemblance to natural tissue components such as collagen which allows direct bonding with other substances, e.g., heparin coating on the surface of polymers for the prevention of blood clotting. Adhesive polymers can be used to close wounds or lute orthopedic implants in place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Wunderlich,Crystals of Linear Macromolecules, ACS Audio Course, American Chemical Society, Washington, D.C., 1973.

    Google Scholar 

  2. J. H. Harrison and R. H. Adler, Nylon as a vascular prosthesis in experimental animals with tensile strength studies,Surg. Gynecol. Obstet.103, 813–818, 1956.

    Google Scholar 

  3. G. H. Kenner, L. Hendricks, W. Barb, G. Gimenez, and J. B. Park, Bone embedding techniques with inhibited PMMA monomer,Stain Technol.57, 121 - 128, 1982.

    Google Scholar 

  4. O. Wichterle and D. Lim, Hydrophilic gels for biological use,Nature (London) 185, 117–118, 1960.

    Article  Google Scholar 

  5. W. M. Thomas, Acrylamide polymers, in:Encyclopedia of Polymer Science and Technology, N. M. Bikales (ed.), Volume 1, pp. 177–197, Interscience, New York, 1964.

    Google Scholar 

  6. M. F. Refojo, Contact lenses, in:Encyclopedia of Chemical Technology, 3rd ed., Volume 16, pp. 720–742, Wiley, New York, 1979.

    Google Scholar 

  7. A. S. Hoffman, A review of the use of radiation plus chemical and biochemical processing treatments to prepare novel biomaterials,Radiat. Phys. Chem.18, 323–342, 1981.

    Google Scholar 

  8. Surgical Simplex P Bone Cement Technical Monograph, Howmedica Inc., Rutherford, N.J., 1977.

    Google Scholar 

  9. J. B. Park, R. C. Turner, and P. E. Atkins, EPR studies of free radicals in PMMA bone cement: A feasibility study,Biomater. Med. Devices Artif. Organs 8, 23–33, 1979.

    Google Scholar 

  10. R. C. Turner, P. E. Atkins, M. A. Ackley, and J. B. Park, Molecular and macroscopic properties of PMMA bone cement: Free radical generation and temperature change versus mixing ratio,J. Biomed. Mater. Res.15, 425–432, 1981.

    Article  Google Scholar 

  11. S. S. Haas, G. M. Brauer, and G. Dickson, A characterization of PMMA bone cement,J. Bone Jt. Surg. 51 A, 380–391, 1975.

    Google Scholar 

  12. Modern Plastics Encyclopedia, Volume57, p. 533, McGraw-Hill, New York, 1980.

    Google Scholar 

  13. R. P. Kusy, Characterization of self-curing acrylic bone cements,J. Biomed. Mater. Res.12, 271–305, 1978.

    Article  Google Scholar 

  14. P. R. Meyer, Jr., E. P. Lautenschlager, and B. K. Moore, On the setting properties of acrylic bone cement,J. Bone Jt. Surg.55A, 149–156, 1973.

    Google Scholar 

  15. Y. Nose, J. Wright, M. Mathis, and W. J. Kolff, Natural rubber artificial heart,Dig. 7th Int. Conf. Med. Biol. Eng. p. 379, 1967.

    Google Scholar 

  16. K. Atsumi, Y. Sakurai, E. Atsumi, S. Narausawa, S. Kunisawa, M. Okikura, and S. Kimoto, Application of specially cross-linked natural rubber for artificial internal organs,Trans. Am. Soc. Artif. Intern. Organs 9, 324–331, 1965.

    Google Scholar 

  17. S. Braley, Acceptable plastic implants, in:Modern Trends in Biomechanics, D. C. Simpson (ed.), pp. 25–51, Butterworths, London, 1970.

    Google Scholar 

  18. Bulletin of the Dow Corning Center for Aid to Medical Research, Dow Corning Corp., Midland, Mich., 1970.

    Google Scholar 

  19. J. H. Dumbleton, Derlin as a material for joint prosthesis—A review, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 41–60, American Society for Testing and Materials, Philadelphia, 1979.

    Chapter  Google Scholar 

  20. M. Spector, M. J. Michon, W. H. Smarook, and G. T. Kwiatrowski, A high-modulus polymer for porous orthopedic implants,J. Biomed. Mater. Res.12, 665–677, 1978.

    Article  Google Scholar 

  21. B. Bloch and G. W. Hastings,Plastics Materials in Surgery, 2nd ed., Thomas, Springfield, III., 1972.

    Google Scholar 

  22. D. F. Williams, Some observations on the role of cellular enzymes in thein vivodegradation of polymers, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 61–75, American Society for Testing and Materials, Philadelphia, 1979.

    Chapter  Google Scholar 

Bibliography

  • B. Bloch and G. W. Hastings,Plastic Materials in Surgery, Thomas, Springfield, III, 1972.

    Google Scholar 

  • S. D. Bruck,Blood Compatible Systhetic Polymers: An Introduction, Thomas, Springfield, III., 1974.

    Google Scholar 

  • S. D. Bruck,Properties of Biomaterials in the Physiological Environment, CRC Press, Boca Raton, Fla, 1980.

    Google Scholar 

  • Guidelines for Physiochemical Characterization of Biomaterials, Report of the National Heart, Lung, and Blood Institute Work Group, Devices and Technology Branch, NIH Publication 80-2186,1980.

    Google Scholar 

  • Guidelines for Blood — Material Interactions, Report of the National Heart, Lung, and Blood Institute Working Group, Devices and Technology Branch, NIH Publication 80-2185, 1980.

    Google Scholar 

  • E. P. Goldberg and A. Nakajima (ed.),Biomedical Polymers, Polymeric Materials and Pharmaceuticals for Biomedical Use, Academic Press, New York, 1980.

    Google Scholar 

  • H. Lee and K. Neville,Handbook of Biomedical Plastics, Pasadena Technology Press, Pasadena, Calif, 1971.

    Google Scholar 

  • S. N. Levine (ed.),Polymers and Tissue Adhesives, Ann. N.Y. Acad. Sci. 146,1968.

    Google Scholar 

  • R. L. Kronenthal and Z. Oser (ed.),Polymers in Medicine and SurgeryPlenum Press, New York, 1975.

    Google Scholar 

  • R. I. Leinninger, Polymers as surgical implants,CRC Crit. Rev. Bioeng.2, 333–360, 1972.

    Google Scholar 

  • M. F. Refojo, Contact lenses, in:Encyclopedia of Chemical Technology, 3rd ed. Volume 16, pp. 720–742, Wiley, New York, 1979.

    Google Scholar 

  • M. F. Refojo, The chemistry of soft hydrogel lens materials, in:Soft Contact Lenses, M. Ruben (ed.), Chapter 3, Wiley, New York, 1978.

    Google Scholar 

  • M. Szycher and W. J. Robinson (ed.),Synthetic Biomedical Polymers, Concepts and Applications, Technomic, Westport, Conn, 1980.

    Google Scholar 

  • W. M. Thomas, Acrylamide polymers, in:Encyclopedia of Polymer Science and Technology, N. M. Bikales (ed.), Volume 1, pp. 177–197, Interscience, New York, 1964.

    Google Scholar 

  • L. Vroman and F. Leonard (ed.),The Behavior of Blood and Its Components at Interfaces, Ann. N.Y. Acad. Sci. 238,1978.

    Google Scholar 

  • O. Wichterle, Hydrogels, in:Encyclopedia of Polymer Science and Technology, N. M. Bikales (ed.), Volume 15, pp. 273–291, Interscience, New York, 1971.

    Google Scholar 

  • O. Wichterle and D. Lim, Hydrophilic gels for biological use,Nature (London) 185, 117–118, 1960.

    Article  Google Scholar 

  • D. F. Williams, Biodegradation of surgical polymers,J. Mater. Sci.17, 1233–1246, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Park, J.B. (1984). Polymeric Implant Materials. In: Biomaterials Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2769-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2769-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9710-9

  • Online ISBN: 978-1-4613-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics