Skip to main content

Mass Action and Equipotentiality Reconsidered

  • Chapter
Brain Injury and Recovery

Abstract

Two conceptual views of cortical function have evolved and been used a number of times over the past 150 years to explain puzzling effects of brain damage: mass action and equipotentiality. The mass action hypothesis asserts that the entire cortex participates in every behavior. Thus, removal of any cortical tissue produces a behavioral change that is proportional to the amount of tissue removed. The equipotentiality hypothesis states that each portion of any given area is able to encode or produce the behavior normally controlled by the entire area. Thus, incomplete damage within a zone is compensated for by the remaining area. These concepts were debated extensively for the first half of this century and now are still invoked periodically as explanations for recovery of function. We revisit the concepts by briefly looking at the history before considering their current forms. We then examine the question of whether they are useful concepts to consider as explanations of recovery of function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayer, S.A., Yackel, J. W., and Puri, P. S., 1982, Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life, Science 216:890–892.

    Article  PubMed  CAS  Google Scholar 

  • Bucy, P. C., Keplinger, J. E., and Siquerira, E. B., 1964, Destruction of the “pyramidal tract” in man, J. Neurosurg. 21:385–398.

    Article  Google Scholar 

  • Cotman, C. W., 1985, Synaptic Plasticity, Guilford Press, New York.

    Google Scholar 

  • Doty, R. W., 1969, Electrical stimulation of the brain in behavioral context, Annu. Rev. Psychol. 20:289–320.

    Article  PubMed  CAS  Google Scholar 

  • Finger, S., and Stein, D. G., 1982, Brain Damage and Recovery: Research and Clinical Perspectives. Academic Press, New York.

    Google Scholar 

  • Geschwind, N., 1965, Disconnexion syndromes in animals and man, Brain 88:237–294.

    Article  PubMed  CAS  Google Scholar 

  • Glees, P., and Cole, J., 1950, Recovery of skilled motor functions after small repeated lesions of motor cortex in macaque, J. Neurophysiol. 13:137–148.

    Google Scholar 

  • Glick, S.D., and Greenstein, S., 1972, Facilitation of recovery after lateral hypothalamic damage by prior ablation of frontal cortex, Nature (New Biol.) 239:187–188.

    CAS  Google Scholar 

  • Goldman, S.A., and Nottebohm, F., 1983, Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain, Proc. Natl. Acad. Sci. U.S.A. 80:2390–2394.

    Article  PubMed  CAS  Google Scholar 

  • Goltz, F., 1892, Der Hund ohne Grosshirn. Siebente Abhandlung uber die Verrichtungen des Grosshirns, Pflugers Arch. 51:570–614.

    Article  Google Scholar 

  • Greenough, W. T., and Volkmar, R. F., 1973, Pattern of dendritic branching in occipital cortex of rats reared in complex environments, Exp. Neurol. 40:491–504.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., 1987, Factors affecting recovery from early cortical damage in rats. 1. Differential behavioral and anatomical effects of frontal lesions at different ages of neural maturation, Behav. Brain Res. 25:205–220.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., and Whishaw, I. Q., 1981, Neonatal frontal lesions in the rat: Sparing of learned but not species-typical behavior in the presence of reduced brain weight and cortical thickness, J. Comp. Physiol. Psychol. 95:863–879.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., and Whishaw, I. Q., 1985a, Fundamentals of Human Neuropsychology, 2nd ed., Freeman, New York.

    Google Scholar 

  • Kolb, B., and Whishaw, I. Q., 1985b, Earlier is not always better: Behavioral dysfunction and abnormal cerebral morphogenesis following neonatal cortical lesion in the rat, Behav. Brain Res. 17:25–43.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., Nonneman, A. J., and Whishaw, I. Q., 1978, Influence of frontal neocortex lesions and body weight manipulation on the severity of lateral hypothalamic aphagia, Physiol. Behav. 21:541–547.

    Article  PubMed  CAS  Google Scholar 

  • Lashley, K. S., 1929, Brain Mechanisms and Intelligence, University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Lawrence, D. G., and Kuypers, H. G. J. M., 1968, The functional organization of the motor system in the monkey. 1. The effects of bilateral pyramidal lesions, Brain 91:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., and Zook, J. M., 1984, Somatosensory cortical map changes following digit amputation in adult monkeys, J. Comp. Neurol. 224:591–605.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, D. A., 1979, Cerebral cortex and adaptive behavior, in: Brain, Behavior and Evolution (D. A. Oakley and H. C. Plotkin, eds.), Methuen, London, pp. 154–188.

    Google Scholar 

  • Passingham, R. E., Perry, V. H., and Wilkinson, F., 1983, The long-term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys, Brain 106:675–705.

    Article  PubMed  Google Scholar 

  • Powley, T. L. and Keesey, R. E., 1970, Relationship of body weight to the lateral hypothalamic feeding syndrome. J. Comp. Physiol. Psychol. 70:25–36.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1984, Defective cell-to-cell interactions as causes of brain malformations, in: Malformations of Development (E. S. Gollin, ed.), Academic Press, New York, pp. 239–285.

    Google Scholar 

  • Rasmussen, T., and Milner, B., 1977, The role of early left-brain injury in determining lateralization of cerebral speech functions, Ann. N.Y. Acad. Sci. 299:355–369.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. E. (ed.), 1983, Behavioral Approaches to Brain Research, Oxford University Press, New York.

    Google Scholar 

  • St. James-Roberts, I., 1981, A reinterpretation of hemispherectomy data without functional plasticity of the brain, Brain Lang. 13:31–53.

    Article  Google Scholar 

  • Schneider, G. E., 1973, Early lesions of the superior colliculus: Factors affecting the formation of abnormal retinal projections, Brain, Behavior and Evolution 8:73–109.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G. E., 1979, Is it really better to have your brain lesion early? Revision of the Kennard principle, Neuropsychologia 17:557–584.

    Article  PubMed  CAS  Google Scholar 

  • Steele-Russell, I. S., 1982, Some observations on the problem of recovery of function following brain damage, Hum. Neurobiol. 1:68–72.

    Google Scholar 

  • Teuber, H.-L., 1975, Recovery of function after brain injury in man, Ciba Found. Symp. 34:159–186.

    PubMed  Google Scholar 

  • Vanderwolf, C. H., Leung, L. W. S., and Stewart, D. J., 1985, Two afferent pathways mediating hippocampal rhythmical slow activity, in: Electrical Activity of the Archicortex (G. Buzsaki and C. H. Vanderwolf, eds.), Akademiai Kiado, Tokyo, pp. 47–66.

    Google Scholar 

  • Whishaw, I. Q., and Kolb, B., 1983, “Stick out your tongue”: Tongue protrusion in neocortex and hypothalamic damaged rats, Physiol. Behav. 30:471–480.

    Article  PubMed  CAS  Google Scholar 

  • Whishaw, I. Q., and Kolb, B., 1984a, Decortication abolishes place but not cue learning in rats, Behav. Brain Res. 11:123–134.

    Article  PubMed  CAS  Google Scholar 

  • Whishaw, I. Q., and Kolb, B., 1984b, Behavioral and anatomical studies of rats with complete or partial decortication in infancy, in: Early Brain Damage (C. R. Almli and S. Finger, eds.), Academic Press, New York, pp. 117–137.

    Google Scholar 

  • Woods, B. T., 1981, The restricted effects of right-hemisphere lesions after age one: Wechsler test data, Neuropsychologia 18:65–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kolb, B., Whishaw, I.Q. (1988). Mass Action and Equipotentiality Reconsidered. In: Finger, S., Levere, T.E., Almli, C.R., Stein, D.G. (eds) Brain Injury and Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0941-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0941-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8256-3

  • Online ISBN: 978-1-4613-0941-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics