Skip to main content

Is Dendritic Proliferation of Surviving Neurons a Compensatory Response to Loss of Neighbors in the Aging Brain?

  • Chapter
Brain Injury and Recovery

Abstract

The plastic capacities of the developing brain are well known, and it is the young brain that usually is emphasized when considering neuronal plasticity. The view taken here is that the plastic capacity of the developing brain does not suddenly cease as some developmental landmark is reached but that some degree of residual plasticity is maintained to the end of the developmental continuum (death). Functionally, this residual plasticity may be manifested in a variety of ways, including (1) recovery from strokes and lesions and (2) compensatory responses to the degenerative phenomena of the aging brain. We define neuronal “plasticity” as the adaptive response(s) of neurons to perturbations in their local environment. The perturbations may be in the chemical composition of the neuron’s immediate surround, its afferent supply, its targets, or in its neighboring neurons and glia. The plastic response(s) to such perturbations may include alteration in dendritic and/or axonal morphology, in synapses, receptors, metabolism, even in genetic expression (e.g., Black et al., 1984: Davis et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral, D. G., Avendano, C., and Cowan, W. M., 1980, The effects of neonatal 6-hydroxydopamine treatment on morphological plasticity in the dentate gyrus of the rat following entorhinal lesions, J. Comp. Neurol. 194:171–192.

    Article  PubMed  CAS  Google Scholar 

  • Banker, G. A., 1980, Trophic interactions between astroglial cells and hippocampal neurons in culture, Science 209:809–810.

    Article  PubMed  CAS  Google Scholar 

  • Black, I. B., Adler, J. E., Dreyfus, C., Jonakait, G., Katz, D., LaGamma, E., and Markey, K., 1984, Neurotransmitter plasticity at the molecular level, Science 225:1266–1270.

    Article  PubMed  CAS  Google Scholar 

  • Buell, S. J., and Coleman, P. D., 1979, Dendritic growth in the aged human brain and failure of growth in senile dementia, Science 206:854–856.

    Article  PubMed  CAS  Google Scholar 

  • Buell, S. J., and Coleman, P. D., 1981, Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia, Brain Res. 214:23–41.

    Article  PubMed  CAS  Google Scholar 

  • Caceres, A., and Steward, O., 1983, Dendritic reorganization in the denervated dentate gyrus of the rat following entorhinal cortical lesions: A Golgi and electron microscopic analysis, J. Comp. Neurol. 214:387–403.

    Article  Google Scholar 

  • Coleman, P. D., Buell, S. J., Magagna, L., Flood, D. G., and Curcio, C. A., 1986, Stability of dendrites in cortical barrels of C57B1/6N mice between 4 and 45 months, Neurobiol. Aging 7:101–105.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. M., Stanfield, B. B., and Kishi, K., 1980, The development of the dentate gyrus, Curr. Top. Dev. Biol. 15:103–157.

    Article  PubMed  Google Scholar 

  • Coyle, J. T., and Molliver, M. E., 1977, Major innervation of newborn rat cortex by monoaminergic neurons, Science 196:444–447.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, T. J., 1982, Naturally occurring neuron death and its regulation by developing neural pathways, Rev. Cyto. 74:163–186.

    Article  CAS  Google Scholar 

  • Cupp, C. J., and Uemura, E., 1980, Age-related changes in prefrontal cortex of Macaca mulatta: Quantitative analysis of dendritic branching patterns, Exp. Neurol. 69:143–163.

    Article  PubMed  CAS  Google Scholar 

  • Curcio, C. A., and Coleman, P. D., 1982, Stability of neuron number in cortical barrels of aging mice, J. Comp. Neurol. 212:158–172.

    Article  PubMed  CAS  Google Scholar 

  • Curcio, C. A., Buell, S. J., and Coleman, P. D., 1982, Morphology of the aging central nervous system: Not all downhill, in: Advances in Neurogerontology, Volume 3, The Aging Motor System (J. A. Mortimer, F. J. Pirozzolo and G. J. Maletta, eds.), Praeger, New York, pp. 7–35.

    Google Scholar 

  • Davis, L. G., Arentzen, R., Reid, J. M., Manning, R. W., Wolfson, B., Lawrence, K., and Baldino, F., Jr., 1986. Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat, Proc. Natl. Acad. Sci. U.S.A. 83:1145–1149.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N. W., Videen, T., Rader, R., Robertson, T., and Coscia, C., 1985, Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation, Exp. Brain Res. 59:30–35.

    Article  PubMed  CAS  Google Scholar 

  • Ebersole, P., Parnavelas, J. G., and Blue, M. E., 1981, Development of the visual cortex of rats treated with 6-hydroxydopamine in early life, Anat. Embryol. 162:489–492.

    Article  PubMed  CAS  Google Scholar 

  • Felten, D. L., Hallman, H., and Jonsson, G., 1982, Evidence for a neurotrophic role of noradrenaline neurons in the postnatal development of rat cerebral cortex, J. Neurocytol. 11:119–135.

    Article  PubMed  CAS  Google Scholar 

  • Flood, D. G., and Coleman, P. D., 1983, Age-related changes in dendritic extent of neurons in supraoptic nucleus of F344 rats, Neurosci. Abstr. 9:930.

    Google Scholar 

  • Flood, D. G., Buell, S. J., DeFiore, C. H., Horwitz, G. J., and Coleman, P. D., 1985, Age-related dendritic growth in dentate gyrus of human brain is followed by regression in the “oldest old,” Brain Res. 345:366–368.

    Article  PubMed  CAS  Google Scholar 

  • Flood, D. G., Buell, S. J., Horwitz, G. J., and Coleman, P. D., 1987, Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia, Brain Res. 402:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P., and Brown, R. M., 1981, Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys, Neuroscience 6:177–187.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W., and McNelly, N. A., 1977, Aging of the rat olfactory bulb: Growth and atrophy of constituent layers and changes in size and number of mitral cells, J. Comp. Neurol. 171:345–368.

    Article  Google Scholar 

  • Hsu, H. K., and Peng, M. T., 1978, Hypothalamic neuron number of old female rats, Gerontology 24:434–440.

    Article  PubMed  CAS  Google Scholar 

  • Jones, W. H., and Thomas, D. B., 1962, Changes in the dendritic organization of neurons in the cerebral cortex following deafferentation, J. Anat. 96:375–381.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D., 1976, Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens, Science 194:206–209.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M., 1981, Cortical recovery from effects of monocular deprivation: Acceleration with norepinephrine and suppression with 6-hydroxydopamine, J. Neurophysiol. 45:254–266.

    PubMed  CAS  Google Scholar 

  • Lauder, J. M., and Bloom, F. E., 1974, Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. I. Cell differentiation, J. Comp. Neurol. 155:469–482.

    Article  PubMed  CAS  Google Scholar 

  • Lidov, H. G., and Molliver, M. E., 1982, The structure of cerebral cortex in the rat following prenatal administration of 6-hydroxydopamine, Dev. Brain Res. 3:81–108.

    Article  CAS  Google Scholar 

  • Linden, R., and Perry, V. H., 1982, Ganglion cell death within the developing retina: A regulatory role for retinal dendrites? Neuroscience 7:2813–2827.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, K. L., 1982, Effects of 6-hydroxydopamine-induced norepinephrine depletion on cerebellar development, Dev. Neurosci. 5:359–368.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, T., Tohyama, M., and Shimizu, N., 1974, Modification of postnatal development of neocortex in rat brain with experimental deprivation of locus coeruleus, Brain Res. 70:515–520.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M. R., and Powell, T. P. S., 1962, Some observations on transneuronal cell degeneration in the olfactory bulb of the rabbit, J. Anat. 96:89–102.

    PubMed  CAS  Google Scholar 

  • McGeer, E., and McGeer, P. L., 1976, Neurotransmitter metabolism in the aging brain, in Neurobiology of Aging (R. D. Terry and S. Gershon, eds.), Raven Press, New York, pp. 389–403.

    Google Scholar 

  • Mouritzen Dam, A., 1979, The density of neurons in the human hippocampus, Neuropathol. Appl. Neurobiol. 5:249–264.

    Article  Google Scholar 

  • Müller, H. W., and Seifert, W., 1982, A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res. 8:195–204.

    Article  PubMed  Google Scholar 

  • Oppenheim, R. W., 1981, Neuronal cell death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in: Studies in Developmental Biology (W. Cowan, ed.), Oxford University Press, New York, pp. 74–133.

    Google Scholar 

  • Parnavelas, J. G., and Blue, M. E., 1982, The role of the noradrenergic system on the formation of synapses in the visual cortex of the rat, Dev. Brain Res. 3:140–144.

    Article  CAS  Google Scholar 

  • Peng, M. T., and Hsu, H. K., 1982, No neuron loss from hypothalamic nuclei of old male rats, Gerontology 28:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V. H., and Linden, R., 1982, Evidence for dendritic competition in the developing retina, Nature 297:683–685.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., and Kasamatsu, T., 1978, Local perfusion of noradrenaline maintains visual cortical plasticity, Nature 271:761–763.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., and Hadley, R. D., 1985, Changes in the dendritic branching of adult mammalian neurons revealed by repeated imaging in situ, Nature 315:404–406.

    Article  PubMed  CAS  Google Scholar 

  • Robain, O., Lanfumey, L., Adrien, J., and Farkas, E., 1985, Developmental changes in the cerebellar cortex after locus ceruleus lesion with 6-hydroxydopamine in the rat, Exp. Neurol. 88:150–164.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Silver, M. A., Shoemaker, W. J., and Bloom, F. E., 1980, Senescent changes in a neurobiological model system: Cerebellar Purkinje cell electrophysiology and correlative anatomy, Neurobiol. Aging 1:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Zornetzer, S. F., and Bloom, F. E., 1981, Senescent pathology of cerebellum: Purkinje neurons and their parallel fiber afferents, Neurobiol. Aging 2:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Zornetzer, S. F., Bloom, F. E., and Mervis, R. E., 1984, Senescent microstructural changes in rat cerebellum, Brain Res. 292:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Rubel, E. W., Smith, Z. D. J., and Steward, O., 1981, Sprouting in the avian brainstem auditory pathway: Dependence on dendritic integrity, J. Comp. Neurol. 202:397–414.

    Article  PubMed  CAS  Google Scholar 

  • Schade, J. P., and Baxter, C. F., 1960, Changes during growth in the volume and surface area of cortical neurons in the rabbit, Exp. Neurol. 2:158–178.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, J., Berry, M., and Baumgarten, H., 1981, The role of noradrenergic fibers in the control of postnatal cerebellar development, Brain Res. 207:200–208.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, J. R., Jr., Khachaturian, H., Hoffman, G. E., and Scholer, J., 1980, Aging of central endocrine neurons and their aminergic afferents, Peptides 1(Suppl. 1): 141–157.

    Article  CAS  Google Scholar 

  • Standler, N. A., and Bernstein, J. J., 1982, Degeneration and regeneration of motoneuron dendrites after ventral root crush: Computer reconstruction of dendritic fields, Exp. Neurol. 75:600–615.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, B. E. H., and Watson, W. E., 1971, Retraction and expansion of the dendritic tree of motor neurons of adult rats induced in vivo, Nature 233:273–275.

    Article  PubMed  CAS  Google Scholar 

  • Tong, L., Spear, P., Kalil, R., and Callahan, E., 1982, Loss of retinal X-cells in cats with neonatal or adult visual cortical damage, Science 217:72–75.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, E., 1985, Age-related changes in the subiculum of Macaca mulatta: Dendritic branching pattern, Exp. Neurol. 87:412–427.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R. E., Kaas, J. H., and Wetzel, A. B., 1979, Evidence for loss of X-cells of the retina after long-term ablation of visual cortex in monkeys, Brain Res. 160:134–138.

    Article  PubMed  CAS  Google Scholar 

  • Wendlandt, S., Crow, T. J., and Stirling, R. V., 1977, The involvement of the noradrenergic system arising from the locus coeruleus in the postnatal development of the cortex in rat brain, Brain Res. 125:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units, Brain Res. 17:205–242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Coleman, P.D., Flood, D.G. (1988). Is Dendritic Proliferation of Surviving Neurons a Compensatory Response to Loss of Neighbors in the Aging Brain?. In: Finger, S., Levere, T.E., Almli, C.R., Stein, D.G. (eds) Brain Injury and Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0941-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0941-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8256-3

  • Online ISBN: 978-1-4613-0941-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics