Skip to main content

Sensory Cortical Reorganization following Peripheral Nerve Injury

  • Chapter
Brain Injury and Recovery

Abstract

The somatotopic order of the body representation found in somatosensory cortex has been described in great detail in the monkey (Merzenich et al., 1978; Kaas et al., 1983), cat (Dykes et al., 1980; Sretavan and Dykes, 1983; Felleman et al., 1983), and several other species (Chapin and Lin, 1984; Wall and Cusick, 1984; Sur et al., 1978, 1980). In each case, a linear progression of recording sites in the cortex produces a precisely organized sequence of receptive fields across the body. The pattern of receptive fields creates a map of the body with a surprising degree of resolution. For example, by recording from small clusters of neurons, Merzenich et al. (1978) observed neural activity elicited from receptive fields only a few millimeters in diameter. As the electrode was moved in horizontal steps as small as 50 µm, the receptive field loci shifted progressively until, when a cortical distance of 500 µm had been traversed, the receptive fields no longer overlapped the first ones encountered. In the rat, comparable groups of neurons may serve only one vibrissa (Welker, 1971). In many mammalian species, several maps of the body have been reported (cf. Dykes and Ruest, 1986). The conclusion seems inescapable that the cortex contains several high-resolution, precisely organized representations of the body surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Burgen, A. S. V., 1984, Muscarinic receptors—an overview, in: Subtypes of Muscarinic Receptors (B. I. Hirschowitz, R. Hammer, A. Giachetti, J. J. Keims, and R. R. Levine, eds.), Elsevier, Amsterdam, pp. 1–3.

    Google Scholar 

  • Celesia, G. G., and Jasper, H. H., 1966, Acetylcholine released from cerebral cortex in relation to state of activation, Neurology 16:1053–1064.

    PubMed  CAS  Google Scholar 

  • Changeux, J. P., Devillers-Thiery, A., and Chemouilli, P., 1984, Acetylcholine receptor: An al-losteric protein, Science 225:1335.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Lin, C.-S., 1984, Mapping the body representation in the SI cortex of anesthetized and awake rats, J. Comp. Neurol. 229:199–213.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Woodward, D. J., 1981, Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviors, Exp. Neurol. 72:164–178.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Woodward, D. J., 1982a, Somatic sensory transmission to the cortex during movement: Gating of single cell responses to touch, Exp. Neurol. 78:654–669.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Woodward, D. J., 1982b, Somatic sensory transmission to the cortex during movement: Phasic modulation over the locomotor step cycle, Exp. Neurol. 78:670–684.

    Article  PubMed  CAS  Google Scholar 

  • Collier, B., and Mitchell, J. F., 1967, The central release of acetylcholine during consciousness and after brain lesions, J. Physiol (Lond.) 188:83–98. Coquery, J.-M., 1978, Role of active movement in control of afferent input from skin in cat and man, in: Active Touch (G. Gordon, ed.), Pergamon Press, New York, pp. 161–169.

    Google Scholar 

  • Dykes, R. W., 1984, Central consequences of peripheral nerve injuries, Ann. Plast. Surg. 13:412–422.

    Article  PubMed  CAS  Google Scholar 

  • Dykes, R. W., 1987, Control of the neuronal receptive field in somatosensory cortex, The Role of Neuroplasticity in the Response to Drugs 78:198–204.

    Google Scholar 

  • Dykes, R. W., and Gabor, A. J., 1981, Magnification functions and receptive field sequences for submodality-specific bands in SI cortex of the cat, J. Comp. Neurol. 202:597–620.

    Article  PubMed  CAS  Google Scholar 

  • Dykes, R. W., and Lamour, Y., 1988a, An electrophysiological laminar analysis of single somatosensory neurons in deafferented rat hindlimb granular cortex subsequent to transection of the sciatic nerve, Brain Res., (in press).

    Google Scholar 

  • Dykes, R. W., and Lamour, Y., 1988b, An electrophysiological study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis, J. Neurophysiol. (in press).

    Google Scholar 

  • Dykes, R. W., and Ruest, A., 1986, What makes a map in somatosensory cortex? in: Cerebral Cortex, Volume 5, Sensory-Motor Areas and Aspects of Cortical Connectivity (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 1–29.

    Google Scholar 

  • Dykes, R. W., Rasmusson, D. D., and Hoeltzell, P., 1980, Organization of primary somatosensory cortex in the cat, J. Neurophysiol. 43:1527–1546.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., Landry, P., Metherate, R. S., and Hicks, T. P., 1984, Functional role of GABA in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol. 52:1066–1093.

    PubMed  CAS  Google Scholar 

  • Edelman, G. M., and Finkel, L. H., 1984, Neuronal group selection in the cerebral cortex, in: Dynamic Aspects of Neocortical Functions, (G. M. Edelman, W. F. Gall, and W. M. Cowan, eds.), John Wiley and Sons, New York, pp. 653–695.

    Google Scholar 

  • Felleman, D. J., Wall, J. T., Cusick, C. G., and Kaas, J. H., 1983, The representation of the body surface in S-I of cats, J. Neurosci. 3:1648–1669.

    PubMed  CAS  Google Scholar 

  • Hebb, D. O., 1949, The Organization of Behavior, John Wiley & Sons, New York.

    Google Scholar 

  • Hicks, T. P., and Dykes, R. W., 1983, Receptive field size for certain neurons in primary somatosensory cortex is deteraiined by GABA-mediated intracortical inhibition, Brain Res. 274:160–164.

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen, J., Sakata, H., Talbot, W. H., and Mountcastle, V. R., 1968, Neuronal coding by cortical cells of the frequency of oscillating peripheral stimuli, Science 162:1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Iwamura, Y., Tanka, M., Sakamoto, M., and Hikosaka, O., 1985a, Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey, Exp. Brain Res. 58:400–411.

    PubMed  CAS  Google Scholar 

  • Iwamura, Y., Tanka, M., Sakamoto, M., and Hikosaka, O., 1985b, Vertical neuronal arrays in the postcentral gyrus signaling active touch: A receptive field study in the conscious monkey, Exp. Brain Res. 58:412–420.

    PubMed  CAS  Google Scholar 

  • Jasper, J. J., and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep, Science 172:601–602.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, W. M., Merzenich, M. M., and Ochs, M. T., 1984, Behaviorally controlled differential use of restricted hand surfaces induce changes in the cortical representation of the hand in area 3b of adult owl monkey, Soc. Neurosci. Abstr. 10:665.

    Google Scholar 

  • Jones, E. G., 1975, Varieties and distribution of nonpyramidal cells in the somatic sensory cortex of the squirrel monkey, J. Comp. Neurol. 160:205–268.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., Merzenich, M. M., and Killackey, H. P., 1983, The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals, Annu. Rev. Neurosci. 6:325–356.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska, J., and Pomeranz, B., 1979, Chronic paw denervation causes an age-dependent appearance of novel responses from forearm in “paw cortex” of kittens and adult cat, J. Neurophysiol. 42:618–633.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., 1975, Acetylcholine receptors in vertebrate CNS, in: Handbook of Psychopharmacology, Volume 6 (L. L. Iverson, S. D. Iverson, and S. H. Snyder, eds.), Plenum Press, New York, pp. 92–126.

    Google Scholar 

  • Krnjevic, K., and Phillis, J. W., 1961, Sensitivity of cortical neurons to acetylcholine, Experientia 17:469.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K., and Phillis, J. W., 1963, Acetylcholine sensitive cells in the cerebral cortex, J. Physiol. (Lond.) 166:296–327.

    CAS  Google Scholar 

  • Krnjevic, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (Lond.) 215:247–258.

    PubMed  CAS  Google Scholar 

  • Lamour, Y., and Dykes, R. W., 1988, Somatosensory neurons in deafferented rat hindlimb granular cortex subsequent to transection of the sciatic nerve: Effects of glutamate and acetylcholine Brain Res. (in press).

    Google Scholar 

  • Lamour, Y., Dutar, P., and Jobert, A., 1982a, Excitatory effect of acetylcholine on different types of neurons in the first somatosensory neocortex of the rat: Laminar distribution and pharmacological characteristics, Neuroscience 7:1483–1494.

    Article  PubMed  CAS  Google Scholar 

  • Lamour, Y., Dutar, P., and Jobert, A., 1982b, Spread of acetylcholine sensitivity in the neocortex following lesion of the nucleus basalis, Brain Res. 252:377–381.

    Article  PubMed  CAS  Google Scholar 

  • Lamour, Y., Dutar, P., Jobert, A., and Dykes, R. W., 1988, An iontophoretic study of single somatosensory neurons in rat granular cortex serving the limbs: A laminar analysis of glutamate and acetylcholine effects on receptive field properties J. Neurophysiol. (in press).

    Google Scholar 

  • Landry, P., and Deschênes, M., 1981, Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat, J. Comp. Neurol. 199:345–371.

    Article  PubMed  CAS  Google Scholar 

  • Landry, P., Diadori, P., and Dykes, R. W., 1987a, Postsynaptic responses evoked in primary somatosensory cortical neurons following stimulation of the ventroposterior lateral nucleus and the corpus callosum in the cat Exp. Brain Res. (in press).

    Google Scholar 

  • Landry, P., Diadori, P., Leclerc, S., and Dykes, R. W., 1987b, Morphological and electrophysiological characteristics of somatosensory thalamocortical axons studied with uitraaxonai staining and recordings in the cat, Exp. Brain Res. 65:317–330.

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh, F. C, 1984, Subtypes of muscarinic receptors: A summary with comments, in: Subtypes of Muscarinic Receptors (B. D. Hurschowitz, R. Hammer, A. Jiachetti, G. G. Kevins, and R. R. Levine, eds.), Elsevier, Amsterdam, pp. 100–103.

    Google Scholar 

  • Marin-Padilla, M., 1969, Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study, Brain Res. 14:633–646.

    Article  PubMed  CAS  Google Scholar 

  • Mash, D. C., Flynn, D. D., and Potter, L. T., 1985, Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation, Science 228:1115–1117.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A., and Prince, D. A., 1985, Two types of muscarinic response to acetylcholine in mammalian cortical neurons, Proc. Natl. Acad. Sci. U.S.A. 82:6344–6348.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, T. M., Whitsel, B. L., and Dryer, D. A., 1982, Anterior parietal cortical topographic organization in macaque monkey: A reevaluation, J. Neurophysiol. 48:289–317.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Sur, M., and Lin, C.-S., 1978, Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI”in the owl monkey (Aotus trivirgatus), J. Comp. Neurol. 181:41–74.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., and Felleman, D., 1983a, Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkey following restricted deafferentation, Neuroscience 8:33–55.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., and Felleman, D. J., 1983b,

    Google Scholar 

  • Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys, Neuroscience 10:639–665.

    Google Scholar 

  • Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., and Zook, J.M., 1984, Somatosensory cortical map changes following digit amputation in adult monkeys, J. Comp. Neurol. 224:591–605.

    Article  PubMed  CAS  Google Scholar 

  • Metherate, R., Tremblay, N., and Dykes, R. W., 1986, Effects of acetylcholine on neuronal responses to somatic stimuli in cat somatosensory cortex, Soc. Neurosci. Abstr. 12:797.

    Google Scholar 

  • Metherate, R., Tremblay, N., and Dykes, R. W., 1987, Acetylcholine permits prolonged potentation of neural responsiveness in cat somatosensory cortex, Neuroscience 22:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Metzler, J., and Marks, P. S., 1979, Functional changes in cat somatic sensory-motor cortex during short term reversible epidural blocks, Brain Res. 328:97–104.

    Google Scholar 

  • Morley, B. J., Farley, G. R., and Javel, E., 1983, Nicotinic acetylcholine receptors in the mammalian brain, Trends Pharmacol. 4:225–227.

    Article  CAS  Google Scholar 

  • Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the monkey: Command functions of operations within extraper-sonal space, J. Neurophysiol. 38:871–908.

    PubMed  CAS  Google Scholar 

  • Rasmusson, D. D., 1975, The effect of stimulus cueing, stimulus modality and response inhibition on acetylcholine release from visual and sensorimotor corticies of awake, conditioned rabbits, Ph.D. Thesis, Dalhousie University, Halifax, Nova Scotia.

    Google Scholar 

  • Rasmusson, D. D., 1982, Reorganization of raccoon somatosensory cortex following removal of the fifth digit, J. Comp. Neurol. 205:313–326.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, D. D., and Dykes, R. W., 1988, Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors Exp. Brain Res. (in press).

    Google Scholar 

  • Rasmusson, D. D., and Szerb, J. C., 1975, Cortical acetylcholine release during operant behavior in rabbits, Life Sci. 16:683–690.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, D. D., and Szerb, J. C., 1976, Acetylcholine release from visual and sensorimotor cortices of conditioned rabbits. The effects of sensory cueing and patterns of responding, Brain Res. 104:243–259.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, D., and Turnbull, B. G., 1983, Immediate effects of digit amputation of SI cortex in the raccoon: Unmasking of inhibitory fields, Brain Res. 288:368–370.

    Article  PubMed  CAS  Google Scholar 

  • Sakata, H., and Iwamura, Y., 1978, Cortical processing of tactile information in the first somatosensory and parietal association areas in the monkey, in: Active Touch (G. Gordon, ed.), Pergamon Press, Oxford, pp. 55–72.

    Google Scholar 

  • Sillito, A. M., and Kemp, J. A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex, Brain Res. 289:143–155.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W., 1983, Neuronal mechanisms of experience-dependent self-organization of the mammalian visual cortex, Acta. Morphol. Hung. 31:235–260.

    PubMed  CAS  Google Scholar 

  • Singer, W., and Rauschecker, J. P., 1982, Central Core control of developmental plasticity in the kitten visual cortex. II. Electrical activation of mesencephalic and diencephalic projections, Exp. Brain Res. 41:223–233.

    Google Scholar 

  • Spehlmann, R., and Downes, K., 1974, The effects of acetylcholine and of synaptic stimulation on the sensorimotor cortex of cats. I. Neuronal responses to stimulation of the reticular formation, Brain Res. 74:229–242.

    Article  PubMed  CAS  Google Scholar 

  • Sretavan, D., and Dykes, R. W., 1983, The organization of two cutaneous submodalities in the forearm region of area 3b of cat somatosensory cortex, J. Comp. Neurol. 213:381–398.

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Nelson, R. J., and Kaas, J. H., 1978, The representation of the body surface in somatosensory area I of the grey squirrel, J. Comp. Neurol. 179:425–449.

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Nelson, R. J., and Kaas, J. H., 1980, The representation of the body surface in somatic koniocortex in the prosimian, Galago, J. Comp. Neurol. 189:381–402.

    Article  CAS  Google Scholar 

  • Tremblay, N., Metherate, R., and Dykes, R. W., 1985, Tactile stimulation and cholinergic modulation in the cat somatosensory cortex, Can. J. Physiol. Pharmacol. 63:A.

    Article  Google Scholar 

  • Wall, J. T., and Cusick, C. G., 1984, Cutaneous responsiveness in primary somatosensory (S-I) hindpaw cortex before and after deafferentation in adult rats, J. Neurosci. 4:1499–1515.

    PubMed  CAS  Google Scholar 

  • Wall, J. T., Felleman, D. J., and Kaas, J., 1983, Recovery of normal topography in the somatosensory cortex of monkeys after nerve crush and regeneration, Science 221:771–773.

    Article  PubMed  CAS  Google Scholar 

  • Wall, P. D., 1977, The presence of ineffective synapses and the circumstances which unmask them, Phil. Trans. R. Soc. Lond. [B] 278:361–372.

    Article  CAS  Google Scholar 

  • Weinberger, N. M., and Diamond, D. M., 1987, Physiological plasticity in auditory cortex: Rapid induction by learning, Prog. Neurobiol. 29:1–55.

    Article  PubMed  CAS  Google Scholar 

  • Welker, C., 1971, Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat, Brain Res. 26:259–275.

    PubMed  CAS  Google Scholar 

  • Woody, C.D., and Engel, J., 1972, Changes in unit activity and thresholds to electrical micro-stimulation at coronal-pericruciate cortex of cat with classical conditioning of different facial movements, J. Neurophysiol. 35:230–241.

    PubMed  CAS  Google Scholar 

  • Woody, C. D., Swartz, B. E., and Gruen, E., 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Brain Res. 150:373–395.

    Article  Google Scholar 

  • Woody, C. D., Alkon, D. L., and Hay, B., 1984, Depolarization-induced effects of Ca+2-calmodulin-dependent protein kinase injection, in vivo, in single neurons of cat motor cortex, Brain Res. 321:192–197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Dykes, R.W., Metherate, R. (1988). Sensory Cortical Reorganization following Peripheral Nerve Injury. In: Finger, S., Levere, T.E., Almli, C.R., Stein, D.G. (eds) Brain Injury and Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0941-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0941-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8256-3

  • Online ISBN: 978-1-4613-0941-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics