Skip to main content

Trophic Hypothesis of Neuronal Cell Death and Survival

  • Chapter
Brain Injury and Recovery

Abstract

Recovery of some components of function generally occurs following damage to the brain. Depending on the extent and location of the damage and the age of the organism at the time of the damage, several different mechanisms have been proposed for the observed recovery. These mechanisms include regeneration, collateral sprouting, receptor supersensitivity, and enzymatic hyperactivity (Aguayo, 1985; Marshall, 1984; Cotman and Nieto-Sampedro, 1984). Conceptually, the recovery will occur if there is sufficient residual system to subserve the function—compensation—or if a similar anatomically intact system substitutes its functional activity for that of the damaged system—substitution. In many instances, however, there is no or little functional recovery because the system underlying the lost function is sufficiently destroyed to have no recuperative mechanisms on which to fall back and no other anatomic system is available to take over the lost function. Under these circumstances large numbers of neurons die. A major cause of the loss of function following brain damage is attributed to the death or loss of neurons. Protection of damaged neurons from death, or revitalization of damaged neurons, can be most rationally attempted or planned with a more complete understanding of the basic principles involved in normal survival of neurons during development and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A. J., 1985, Axonal regeneration from injured neurons in the adult mammalian central nervous system, in: Synaptic Plasticity (C. W. Cotman, ed.), Guilford Press, New York, pp. 457–484.

    Google Scholar 

  • Appel, S. H., 1981, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease, Ann. Neurol. 10:499–505.

    Article  PubMed  CAS  Google Scholar 

  • Barbin, G., Manthorpe, M., and Varon, S., 1984, Purification of the chick eye ciliary neuronotrophic factor (CNTF), J. Neurochem. 43:1468–1478.

    Article  PubMed  CAS  Google Scholar 

  • Barde, Y. A., Edgar, D., and Thoenen, H., 1982, Purification of a new neurotrophic factor from mammalian brain, EMBO J. 1:549–553.

    PubMed  CAS  Google Scholar 

  • Berg, D. K., 1984, New neuronal growth factors, Annu. Rev. Neurosci. 7:149–170.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., and Stenevi, U., 1972, Nerve growth factor: Stimulation of regenerative growth of central noradrenergic neurons, Science 175:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  • Black, I. B., 1978, Regulation of autonomic development, Annu. Rev. Neurosci. 1:183–214.

    Article  PubMed  CAS  Google Scholar 

  • Collins, F., and Crutcher, K. A., 1985, Neurotrophic activity in the adult rat hippocampal formation: Regional distribution and increase after septal lesion, J. Neurosci. 5:2809–2814.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., and Nieto-Sampedro, M., 1984, Cell biology of synaptic plasticity, Science 225:1287–1294.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. M., Fawcett, J. W., O’Leary, D. D. M., and Stanfield, B. B., 1984, Regressive events in neurogenesis, Science 225:1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher, K. A., and Davis, J. N., 1981, Sympathetic noradrenergic sprouting in response to central cholinergic denervation, Trends Neurosci. 4:70–72.

    Article  Google Scholar 

  • Crutcher, K. A., and Davis, J. N., 1982, Target regulation of sympathetic sprouting in the rat hippocampal formation, Exp. Neurol. 75:347–359.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, T. J., 1982, Naturally occurring neuron death and its regulation by developing neural pathways, Int. Rev. Cytol. 74:163–186.

    Google Scholar 

  • Dreyfus, C, Peterson, E. R., and Crain, S. M., 1980, Failure of nerve growth factor to affect fetal mouse brain stem catecholaminergic neurons in culture, Brain Res. 194:540–547.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F. H., and Bjorklund, A., 1986, Enhanced graft survival in the hippocampus following selective denervation, Neuroscience 17:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F. H., Bjorklund, A., and Stenevi, U., 1984, Denervation releases a neuronal survival factor in adult rat hippocampus, Nature 308:637–639.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F H., Wictorin, K., Fischer, W., Williams, L. R., Varon, S., and Bjorklund, A., 1986, Cell loss and sprouting of cholinergic neurons in medial septum and diagonal band following fimbria-fornix transection: Quantitative temporal analysis, Neuroscience 19(l):241–255.

    Article  PubMed  CAS  Google Scholar 

  • Greene, L. A., and Shooter, E. M., 1980, The nerve growth factor: Biochemistry, synthesis, and mechanism of action, Annu. Rev. Neurosci. 3:353–402.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., and Oppenheim, R. N., 1982, Naturally occurring neuronal death in vertebrates, Neurosci. Comment 1:39–55.

    Google Scholar 

  • Hart, T., Chaimas, N. B., Moore, R. Y., and Stein, D. G., 1978, Effects of nerve growth factor on behavioral recovery following caudate nucleus lesions in rats, Brain Res. Bull. 3:245–251.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., 1983, Alzheimer’s disease caused by a lack of nerve growth factor? Ann. Neurol. 13:109–110.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., 1986, Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after injury, J. Neurosci. 6:2155–2162.

    PubMed  CAS  Google Scholar 

  • Hefti, F., and Weiner, W. J., 1986, Nerve growth factor and alzheimer’s disease, Ann. Neurol. 20:275–281.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Hartikka, J. J., Eckenstein, R., Gnahn, H., Heumann, R., and Schwab, M., 1985, Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons, Neuroscience 14:55–68.

    Article  PubMed  CAS  Google Scholar 

  • Herschman, H. R., Goodman, R., Chandler, C, Simpson, D., Cawley, D., Cole, R., and De Vellis, J., 1983, Is epidermal growth factor a modulator of nervous system function? Birth Defects 19:79–94.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M., 1983, An autoimmune approach to the study of nerve growth factor and other factors, in: Growth and Maturation Factors, Volume 5 (G. Guroff, ed.), John Wiley & Sons, New York, pp. 55–72.

    Google Scholar 

  • Kesslak, J. P., Frederickson, C. J., and Gage, F. H., 1987, Quantification of hippocampal noradrenaline and zinc changes after selective cell destruction, Exp. Brain Res. 67:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Kimble, D. P., BreMiller, R., and Perez-Polo, J. R., 1979, Nerve growth factor applications fail to alter behavior of hippocampal lesioned rats, Physiol. Behav. 23:653–657.

    Article  PubMed  CAS  Google Scholar 

  • Konkol, R. J., Mailam, R. B., Bendeich, E. G., Garrison, A. M., Mueller, R. A., and Breese, G. R., 1978, Evaluation of the effects of nerve growth factor and anti-nerve growth factor on the development of central catecholaminergic neurons, Brain Res. 144:277–285.

    Article  PubMed  CAS  Google Scholar 

  • Korsching, S., Auberger, G., Heumann, R., Scott, J., ând Thoenen, H., 1985, Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation, EMBO J. 4:1389–1393.

    PubMed  CAS  Google Scholar 

  • Landmesser, L., and Pilar, A., 1978, Interactions between neurons and their targets during in vivo synaptogenesis, Fed. Proc. 37:2016–2021.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., 1966, The nerve growth factor: Its mode of action on sensory and sympathetic neurons, Harvey Lect. 60:217–259.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., 1982, Developmental neurobiology and the natural history of nerve growth factor, Annu. Rev. Neurosci. 5:341–362.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, R. M., 1979, Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurons, Nature 282:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Manthorpe, M., and Varon, S., 1985, Regulation of neuronal survival and neuritic growth in the avian ciliary ganglion, in: Growth and Maturation Factors, Volume 3 (G. Guroff, ed.), John Wiley & Sons, New York, pp. 77–117.

    Google Scholar 

  • Manthorpe, M., Skaper, S. D., Williams, L. R., and Varon, S., 1986, Purification of adult rat sciatic nerve ciliary neuronotrophic factor, Brain Res. 367:282–286.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J. F., 1984, Brain function: Neural adaptation and recovery from injury, Annu. Rev. Psychol. 35:277–308.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, H. J., Dreyfus, C. F., Jonakait, G. M., and Black, LB., 1986, Nerve growth factor promotes cholinergic development in brain striatal cultures, Proc. Natl. Acad. Sci. U.S.A. 82:7777–7781.

    Article  Google Scholar 

  • Mobley, W. C, Rutkowski, J. L., Tennekoon, G. I., Buchanan, K., and Johnston, M. V., 1985, Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor, Science 229:284–287.

    Article  PubMed  CAS  Google Scholar 

  • Orten, U., Weskamp, G., Schlumpf, M., Lichtensteiger, W., and Mobley, W. C, 1985, Effects of antibodies against nerve growth factor on developing cholinergic forebrain neurons in the rat, Soc. Neurosci. Abstr. 11:661

    Google Scholar 

  • Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter functions, Annu. Rev. Neurosci. 1:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, G. M., and Loy, R., 1983, Sprouting of sympathetic fibers in the hippocampus in the absence of major target cell candidates, Brain Res. 264:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Prestige, M. C., 1970, Differentiation, degeneration and the role of the periphery: Quantitative considerations, in: The Neurosciences: Second Study Program (F. O. Schmitt, ed.), Rockefeller University Press, New York, pp. 73–82.

    Google Scholar 

  • Rudge, J. S., Manthorpe, M., and Varon, S., 1985, The output of neuronotrophic and neurite promoting agents from rat brain astroglial cells: A microculture method for screening potential regulatory molecules, Brain Res. 19:161–172.

    Article  CAS  Google Scholar 

  • Schwab, M. E., Often, U., Agid, Y., and Thoenen, H., 1979, Nerve growth factor (NGF) in the rat CNS absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra, Brain Res. 168:473–483.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G. I., and Rutter, W. J., 1983, Isolation and nucleotide sequence of cDNA encoding the precursor of mouse nerve growth factor, Nature 302:538–540.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, M., and Schwab, M. E., 1984, Specific retrograde transport of nerve growth factor (NGF) from cortex to nucleus basalis in the rat, Brain Res. 300:33–36.

    Article  PubMed  CAS  Google Scholar 

  • Springer, J. E., and Loy, R., 1985, Intrahippocampal injections of antiserum to nerve growth factor inhibit sympathohippocampal sprouting, Brain Res. Bull. 15:629–634.

    Article  PubMed  CAS  Google Scholar 

  • Stein, D. G., and Will, B. E., 1983, Nerve growth factor produces a temporary facilitation of recovery from entorhinal cortex lesions, Brain Res. 261:127–131.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, G. R., Frederickson, C. J., Howell, G. A., and Gage, F. H., 1984, Cholinergic denervation-induced increase of chelatable zinc in mossy-fiber region of the hippocampal formation, Brain Res. 290:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Tanuichi, M., and Johnson, E. M., 1985, Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor, J. Cell Biol. 101:1100–1106.

    Article  Google Scholar 

  • Tanuichi, M., Schweizer, J. B., and Johnson, E. M., 1986, Nerve growth factor receptor molecules in rat brain, Proc. Natl. Acad. Sci. U.S.A. 83:1950–1954.

    Article  Google Scholar 

  • Thoenen, H., and Barde, Y.-A., 1980, Physiology of nerve growth factor, Physiol. Rev. 60:1284–1335.

    PubMed  CAS  Google Scholar 

  • Thoenen, H., and Edgar, D., 1985, Neurotrophic factors, Science 229:238–242.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, A., Gray, A., Bermen, C, and Dull, T. J., 1983, Human beta-nerve growth factor gene sequence highly homologous to that of mouse, Nature 303:821–825.

    Article  PubMed  CAS  Google Scholar 

  • Varon, S., 1975, Nerve growth factor and its mode of action, Exp. Neurol. 48:75–92.

    Article  PubMed  CAS  Google Scholar 

  • Varon, S., 1985, Factors promoting the growth of the nervous system, Discuss. Neurosci. 2(3):1–62.

    Google Scholar 

  • Varon, S., and Adler, R., 1980, Nerve growth factors and control of nerve growth, Curr. Top. Dev. Biol. 16:207–252.

    Article  PubMed  CAS  Google Scholar 

  • Varon, S., and Adler, R., 1981, Trophic and specifying factors directed to neuronal cells, Adv. Cell. Neurobiol. 2:115–163.

    CAS  Google Scholar 

  • Varon, S., and Skaper, S. D., 1980, Short-latency effects of nerve growth factor: An ionic view, in: Tissue Culture in Neurobiology (E. Giacobini, A. Vernadadkis, and A. Shahar, eds.), Raven Press, New York, pp. 333–347.

    Google Scholar 

  • Varon, S., and Skaper, S. D., 1983, The Na+, K+ -pump may mediate the control of nerve cells by nerve growth factor, Trends Biochem. Sci. 8:22–25.

    Article  CAS  Google Scholar 

  • Varon, S., and Somjen, G., 1979, Neuron-glia interactions, Neurosci. Res. Prog. Bull. 17:1–239.

    CAS  Google Scholar 

  • Varon, S., Nomura, J., and Shooter, E. M., 1968, Reversible dissociation of the mouse nerve growth factor into different subunits, Biochemistry 7:1296–1303.

    Article  PubMed  CAS  Google Scholar 

  • Varon, S., Raiborn, C., and Norr, S., 1974, Association of antibody to nerve growth factor with ganglionic non-neurons (glia) and consequent interference with their neuron-supportive action, Exp. Cell Res. 88:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Wallicke, P., Cowan, W. M., Veno, N., Baird, A., and Guillemin, R., 1986, Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension, Proc. Natl. Acad. Sci. U.S.A. 83:3012–3016.

    Article  Google Scholar 

  • Will, B., and Hefti, F., 1985, Behavioral and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions, Behav. Brain Res. 17:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L. R., Varon, S., Peterson, G., Wictorin, K., Fischer, W., Bjorklund, A., and Gage, F. H., 1986, Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection, Proc. Natl. Acad. Sci. U.S.A. 83:9231–9235.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B. A., and Shooter, E. M., 1982, The biology and mechanism of action of nerve growth factor, Annu. Rev. Biochem. 51:845–868.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., Kohsaka, S., Idei, T., Otani, M, Toya, S., and Tsukada, Y., 1986, Septal deafferentation enhances the neurotrophic effects of rat hippocampus on cultured neural cells from the central nervous system, Neurosci. Lett. 66:181–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Gage, F.H., Varon, S. (1988). Trophic Hypothesis of Neuronal Cell Death and Survival. In: Finger, S., Levere, T.E., Almli, C.R., Stein, D.G. (eds) Brain Injury and Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0941-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0941-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8256-3

  • Online ISBN: 978-1-4613-0941-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics