Skip to main content

Another Look at Vicariation

  • Chapter
Brain Injury and Recovery

Abstract

Vicariation has long been suggested as a mechanism for recovery of function following brain damage. Essentially, this concept involves the ability of one part of the brain to substitute for the function of another. Vicariation has been the source of much debate in neuroscience and lies at the heart of the enduring controversy known as localization of function. The idea that another area of the brain can take over the function of a damaged area following brain injury is difficult to reconcile with the concept that specific functions are located in specific areas of the brain. If there exists an isomorphic relationship between the neurological and behavioral, how could the behavior return without a parallel regrowth of the neural tissue? And if other parts of the brain also have an isomorphic relationship with other sets of behaviors, how is it possible for one or more of these neurological areas to take on new behaviors?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baumann, T. P., and Spear, P. D., 1977, Role of the lateral suprasylvian visual area in behavioral recovery from effects of visual cortex damage in cats, Brain Res. 138:445–468.

    Article  PubMed  CAS  Google Scholar 

  • Benton, A., 1978, The interplay of experimental and clinical approaches in brain lesion research, in: Recovery from Brain Damage (S. Finger, ed.), Plenum Press, New York, pp. 49–68.

    Google Scholar 

  • Blakemore, C. B., and Falconer, M. A., 1967, Long-term effects of anterior temporal lobectomy on certain cognitive functions, J. Neurol. Neurosurg. Psychiatry 30:364–367.

    Article  PubMed  CAS  Google Scholar 

  • Davis, N., and LeVere, T. E., 1982, Recovery of function after brain damage: The question of individual behaviors or functionality, Exp. Neurol. 75:68–78.

    Article  PubMed  CAS  Google Scholar 

  • Dostrovsky, J. O., Millar, J., and Wall, P. D., 1976, The immediate shift of afferent drive of dorsal column nucleus cells following deafferentation: A comparison of acute and chronic deafferentation in gracile nucleus and spinal cord, Exp. Neurol. 52:480–495.

    Article  PubMed  CAS  Google Scholar 

  • Finger, S., and Almli, C. R., 1985, Brain damage and neuroplasticity: Mechanisms of recovery or development? Brain Res. Rev. 10:177–186.

    Article  Google Scholar 

  • Galambos, R., Norton, T. T., and Frommer, G. P., 1967, Optic tract lesions sparing pattern vision in cats, Exp. Neurol. 18:8–25.

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga, M. S., Volpe, B. T., Smylie, C. S., Wilson, D. H., and Le Doux, J. E., 1979, Plasticity in speech organization following commissurotomy, Brain 102:805–815.

    Article  PubMed  CAS  Google Scholar 

  • Geschwind, N., 1974, Late changes in the nervous system: An overview, in: Plasticity and Recovery of Function in the Nervous System (D. G. Stein, J. J. Rosen, and N. Butters, eds.), Academic Press, New York. pp. 467–508.

    Google Scholar 

  • Glassman, R. B., 1971, Recovery following sensorimotor cortical damage: Evoked potentials, brain stimulation and motor control, Exp. Neurol. 33:16–29.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J. H., 1939, Selected Writings (J. Taylor, ed.), Hodder and Stoughton, London.

    Google Scholar 

  • John, E. R., Tang, Y., Brill, A. B., Young, R., and Ono, K., 1986, Double-labeled metabolic maps of memory, Science 233:1167–1175.

    Article  PubMed  CAS  Google Scholar 

  • Jonason, K. R., Lauber, S. M., Robbins, M. J., Meyer, P. M., and Meyer, D. R., 1970, Effects of amphetamine on relearning pattern and black-white discriminations following neocortical lesions in rats, J. Comp. Physiol. Psychol. 73:47–55.

    Article  PubMed  CAS  Google Scholar 

  • Lashley, K. S., 1929, Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain, University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Lashley, K. S., 1938, Factors limiting recovery after central nervous system lesions, J. Nerv. Ment. Dis. 88:733–755.

    Article  Google Scholar 

  • LeVere, T. E., 1975, Neural stability, sparing, and behavioral recovery following brain damage, Psychol. Rev. 82:344–358.

    Article  PubMed  CAS  Google Scholar 

  • LeVere, T. E., and Morlock, G. W., 1973, Nature of visual recovery following posterior neodecortication in the hooded rat, J. Comp. Physio. Psych., 83:62–67.

    Article  CAS  Google Scholar 

  • Leyton, A. S. F., and Sherrington, C. S., 1917, Observations on the excitable cortex of the chimpanzee, orangutan, and gorilla, Q. J. Exp. Physiol. 11:135–222.

    Google Scholar 

  • Loesche, J., and Steward, O., 1977, Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: Recovery of alternation performance following unilateral entorhinal cortex lesions, Brain Res. Bull. 2:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Luria, A. R., 1966, Human Brain and Psychological Processes, Harper & Row, New York.

    Google Scholar 

  • Merzenich, M. M., and Kaas, J. H., 1982, Reorganization of mammalian somatosensory cortex following peripheral nerve injury, Trends Neurosci. December: 434–436.

    Google Scholar 

  • Mountcastle, V. B., 1977, An organizing principle for cerebral function: The unit module and the distributed system, in: The Neurosciences Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, pp. 21–42.

    Google Scholar 

  • Raisman, G., 1969, Neuronal plasticity in the septal nuclei of the adult rat, Brain Res. 14:25–48.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, J. J., and Stein, D. G., 1984, Sparing and recovery of spatial alternation performance after entorhinal cortex lesions in rats, Behav. Brain Res. 13:53–61.

    Article  PubMed  CAS  Google Scholar 

  • Rosner, B. S., 1970, Brain functions, Annu. Rev. Psychol. 21:555–594.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., and Cotman, C. W., 1977, Recovery of spontaneous alternation following lesions of entorhinal cortex in adult rats: Possible correlation to axon sprouting, Behav. Biol. 21:286–293.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., and Wright, D. C., 1977, Behavioral and electrophysiological evidence for cortical reorganization of function following serial lesions of the visual cortex, Physiol. Psychol. 5:103–107.

    Google Scholar 

  • Spear, P. D., 1984, Consequences of early visual cortex damage in cats, in: Early Brain Damage, Volume 2 (S. Finger and C. R. Almli, eds.), Academic Press, New York. pp. 229–252.

    Google Scholar 

  • Spear, P. D., and Baumann, T. P., 1979a, Effects of visual cortex removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat, J Neurophysiol. 42(1):31–56.

    PubMed  CAS  Google Scholar 

  • Spear, P. D., and Baumann, T. P., 1979b, Neurophysiological mechanisms of recovery from visual cortex damage in cats: Properties of lateral suprasylvian visual area neurons following behavioral recovery, Exp. Brain Res. 35:177–192.

    Article  PubMed  CAS  Google Scholar 

  • Spear, P. D., Millar, S., and Ohman, L., 1983, Effects of lateral suprasylvian visual cortex lesions on visual localization, discrimination, and attention in cats, Behav. Brain Res. 10:339–359.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, J. M., 1966, Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat, Science 153:1544–1547.

    Article  PubMed  CAS  Google Scholar 

  • von Monokow, C., 1914, Die lokalisation im grosshirn und der abbau der funktion durch kortikale herde, J. F. Bergmann, Wiesbaden. Translated and excerpted by G. Harris in: Mood, States and Mind, K. H. Pribram (ed.), Penguin, London, 1969, pp. 27–37.

    Google Scholar 

  • Wall, P. D., 1976, Plasticity in the adult mammalian central nervous system, Prog. Brain Res. 45:359–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Slavin, M.D., Laurence, S., Stein, D.G. (1988). Another Look at Vicariation. In: Finger, S., Levere, T.E., Almli, C.R., Stein, D.G. (eds) Brain Injury and Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0941-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0941-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8256-3

  • Online ISBN: 978-1-4613-0941-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics