Skip to main content

Abstract

Urine volume normally is closely matched to the dietary intake of water and is largely independent of the intake of solute over the range encountered in normal diets. Water balance in the face of varying intake is achieved by renal regulation of urine volume through the operation of the concentrating and diluting mechanism: Extrarenal fluid losses via the skin and lungs, and in stool, occur, but they are relatively constant and do not contribute to the pathophysiology of polyuric states. Although urine volume is regulated independently of solute excretion in most circumstances, the two are related at the extremes: very low rates of solute excretion may impair the ability to maintain water balance and result in dilutional hyponatremia, while extremely high rates of solute excretion may obligate urinary water excretion and lead to negative water balance and hypernatremia. This circumstance of solute diuresis is one of the polyuric syndromes and will be discussed more fully below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simpson JB, Epstein AN, Camardo JS Jr: Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rats. J Comp Physiol Psychol 92:768, 1978.

    Article  Google Scholar 

  2. Caverson MM, Ciriello J: Effects of stimulation of afferent renal nerves on plasma levels of vasopressin. Am J Physiol 252:R801, 1987.

    PubMed  CAS  Google Scholar 

  3. Hall DA, Varney DM: Effect of vasopressin on electrical potential differences and chloride transport in mouse medullary thick ascending limb of Henle. J Clin Invest 66:792, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Forrest JN Jr, Cox M, Hong C, et al.: Superiority of demyclo-cycline over lithium in the treatment of chronic syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med 298:173, 1978.

    Article  PubMed  Google Scholar 

  5. Beck TR, Hassid A, Dunn MJ: The effect of arginine vasopressin and its analogs on the synthesis of prostaglandin E2 by rat renal medullary interstitial cells in culture. J Pharmacol Exp Ther 215:15, 1980.

    PubMed  CAS  Google Scholar 

  6. Gross PA, Schrier RW, Anderson RJ: Prostaglandins and water metabolism: A review with emphasis on in vivo studies. Kidney Int 19:839, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Miller M, Dalakos T, Moses AM, et al.: Recognition of partial defects in antidiuretic hormone secretion. Ann Int Med 73:721, 1970.

    PubMed  CAS  Google Scholar 

  8. Moses AM, Notman DD: Diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion. Adv Int Med 27:73, 1982.

    CAS  Google Scholar 

  9. Coggins CH, Leaf A: Diabetes insipidus. Am J Med 42:807, 1967.

    Article  PubMed  CAS  Google Scholar 

  10. Robinson MG, Kaplan SA: Inheritance of vasopressin resistant (‘nephrogenic’) diabetes insipidus. Am J Dis Child 99:164, 1960.

    CAS  Google Scholar 

  11. Silverstein E, Tobian L: Pitressin-resistant diabetes insipidus with massive hydronephrosis. Am J Med 30:819, 1961.

    Article  Google Scholar 

  12. Carter RD, Goodman AD: Nephrogenic diabetes insipidus accompanied by massive dilation of the kidneys, ureters and bladder. J Urol 89:366, 1963.

    PubMed  CAS  Google Scholar 

  13. Fichman MP, Brooker G: Deficient renal cyclic adenosine 3′, 5′-monophosphate production in nephrogenic diabetes insipi-duc. J Clin Endocrinol Metab 35:35, 1972.

    Article  PubMed  CAS  Google Scholar 

  14. Shearn MA, Tu W: Nephrogenic diabetes insipidus and other defects of renal tubular function in Sjogren’s syndrome. Am J Med 39:312, 1965.

    Article  PubMed  CAS  Google Scholar 

  15. Carone FA, Epstein FH: Nephrogenic diabetes insipidus caused by amyloid disease: Evidence in man of role of collecting ducts in concentrating urine. Am J Med 29:539, 1960.

    Article  PubMed  CAS  Google Scholar 

  16. Smithline N, Kassirer J, Cohen JJ: Light-chain nephropathy, tubular dysfunction and light-chain proteinuria. N Engl J Med 294:71, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Holliday MA, Egar TJ, Morris CR, et al.: Vasopress in resistant hyposthenuria in chronic renal disease. Am J Med 42:378, 1967.

    Article  PubMed  CAS  Google Scholar 

  18. Earley LE: Extreme polyuria in obstructive uropathy: Report of a case of ‘water-losing nephritis’ in an infant with discussion of polyuria. N Engl J Med 255:600, 1956.

    Article  PubMed  CAS  Google Scholar 

  19. Levitt MF, Hausser AD, Levy MS, et al.: The renal concentrating defect in sickle cell disease. Am J Med 29:611, 1960.

    Article  PubMed  CAS  Google Scholar 

  20. Buckalew VM Jr, Someren A: Renal manifestations of sickle cell disease. Arch Intern Med 133:660, 1974.

    Article  PubMed  Google Scholar 

  21. Tannen RL, Regal EM, Dunn MJ, et al.: Vasopressin-resistant hyposthenuria in advance chronic renal disease. N Engl J Med 280:1135, 1969.

    Article  PubMed  CAS  Google Scholar 

  22. Miller PD, Krebs RA, Neal BJ, et al.: Polyuric prerenal failure. Arch Int Med 140:907, 1980.

    Article  CAS  Google Scholar 

  23. Singer I, Forrest JN: Drug-induced states of nephrogenic diabetes insipidus. Kidney Int 10:82, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Singer I, Rotenberg D, Puschett JB: Lithium-induced nephrogenic diabetes insipidus: In vivo and in vitro studies. J Clin Invest 51:1081, 1972.

    Article  PubMed  CAS  Google Scholar 

  25. Myers JB, Morgan TO, Carney SL, et al.: Effects of lithium on the kidney. Kidney Int. 18:601, 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Singer I, Rotenberg D: Demeclocycline-induced nephrogenic diabetes insipidus. Ann Intern Med 79:679, 1973.

    PubMed  CAS  Google Scholar 

  27. Mannitius A, Levitin H, Epstein FH: On the mechanism of impairment of renal concentrating ability in hypercalcemia. J Clin Invest 39:693, 1960.

    Article  Google Scholar 

  28. Zeffren JL, Heinemann HO: Reversible defect in renal concentrating mechanism in patients with hypercalcemia. Am J Med 33:54, 1962.

    Article  PubMed  CAS  Google Scholar 

  29. Back N, Sigh H, Reed E, et al.: Pathogenic role of cyclic AMP in the impairment of urinary concentrating ability in acute hypercalcemia. J Clin Invest 54:1049, 1974.

    Article  Google Scholar 

  30. Manitius A, Levitin H, Beck D, et al.: On the mechanism of impairment of renal concentrating ability in potassium deficiencies. J Clin Invest 39:684, 1960.

    Article  PubMed  CAS  Google Scholar 

  31. Berl T, Aisenbrey GA, Linas SL: Renal concentrating defect in the hypokalemic rat is prostaglandin independent. Am J Physiol 238:F37, 1980.

    PubMed  CAS  Google Scholar 

  32. Berl T, Linas S, Ainsenbrey G, et al.: On the mechanism of polyuria in potassium depletion. The role of polydipsia. J Clin Invest 60:620, 1977.

    Article  PubMed  CAS  Google Scholar 

  33. Levi M, Peterson L, Berl T: Mechanism of concentrating defect in hypercalcemia. Role of polydipsia and prostaglandins. Kidney Int 23:489, 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Barlow ED, De Wardener HE: Compulsive water drinking. Q J Med 28:235, 1959.

    PubMed  CAS  Google Scholar 

  35. Dubovsky SL, Grabon S, Berl T, et al.: Syndrome of inappropriate secretion of antidiuretic hormone with exacerbated psychosis. Ann Int Med 79:551, 1973.

    PubMed  CAS  Google Scholar 

  36. Gennari FJ, Kassirer JP: Osmotic diuresis. N Engl J Med 291:714, 1974.

    Article  PubMed  CAS  Google Scholar 

  37. Kosmas ME: Evaluation of a new antidiuretic agent, desmopressin acetate (DDAVP). JAMA 240:1896, 1978.

    Article  Google Scholar 

  38. Ziai F, Waller R, Rosenthal IM: Treatment of central diabetes insipidus in adults and children with desmopressin. Arch Intern Med 138:1382, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Earley LE, Orloff J: The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest 41:1988, 1962.

    Google Scholar 

  40. Moses AM, Numann P, Miller M: Mechanism of chlorpropa-mide-induced antidiuresis in man. Evidence for release of ADH and enhancement of peripheral action. Metabolism 22:59, 1973.

    Article  PubMed  CAS  Google Scholar 

  41. Froyshov I, Haugen HN: Chlorpropamide treatment in diabetes insipidus. Acta Med Scand 183:397, 1968.

    Article  PubMed  CAS  Google Scholar 

  42. Zusman RM, Keiser HR, Handler JS: Inhibition of vasopres-sin-stimulated prostaglandin E biosynthesis by chlorpropamide in the toad urinary bladder. Mechanism of enhancement of vasopressin-stimulated water flow. J Clin Invest 60:1348, 1977.

    Article  PubMed  CAS  Google Scholar 

  43. Fichman MP, Speckart P, Zia P, et al.: Antidiuretic response to prostaglandin inhibition in primary and nephrogenic diabetes insipidus. Clin Res 23:505A, 1977.

    Google Scholar 

  44. Wales JK: Treatment of diabetes insipidus with carba-mazepine. Lancet 2:948, 1975.

    Article  PubMed  CAS  Google Scholar 

  45. Rado JP: Combination of carbamazepine and chlorpropamide in the treatment of ‘hyporesponders’ pituitary diabetes insipidus. J Clin Endocrinol Metab 38:1, 1974.

    Article  PubMed  CAS  Google Scholar 

  46. Usberti M, Dechaux M, Guillot M, et al.: Renal prostaglandin E2 in nephrogenic diabetes insipidus. Effects of inhibition of prostaglandin synthesis by indomethacin. J Pediat 97:476, 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Delaney V, dePertuz Y, Nixon D, et al.: Indomethacin in streptozocin-induced nephrogenic diabetes insipidus. Am J Kidney Dis 9:79, 1987.

    PubMed  CAS  Google Scholar 

  48. Bucht G, Wahlin A: Renal concentrating capacity in long-term lithium treatment and after withdrawal of lithium. Acta Med Scand 207:309, 1980.

    Article  PubMed  CAS  Google Scholar 

  49. Kennedy RM, Earley LE: Profound hyponatremia resulting from a thiazide induced decrease in urinary diluting capacity in a patient with primary polydipsia. N Engl J Med 282:1185, 1970.

    Article  PubMed  CAS  Google Scholar 

  50. Vaughan ED Jr, Gillenwater JY: Diagnosis, characterization and management of post-obstructive diuresis. J Urol 109:286, 1973.

    PubMed  Google Scholar 

  51. Feig PV: Hypernatremic and hypertonic syndromes. Med Clin North Am 65:271, 1981.

    PubMed  CAS  Google Scholar 

  52. Moran SM, Jamison RL: The variable hyponatremia response to hyperglycemia. West J Med 142:49, 1985.

    PubMed  CAS  Google Scholar 

  53. Katz MA: Hyperglycemia-induced hyponatremia. Calculation of expected serum sodium depression. N Engl J Med 289:843, 1973.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Muldowney, W.P., Humphreys, M.H. (1991). Polyuric Syndromes. In: Suki, W.N., Massry, S.G. (eds) Therapy of Renal Diseases and Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0689-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0689-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8027-9

  • Online ISBN: 978-1-4613-0689-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics