Skip to main content

Role of Basal Ganglia in Initiation of Voluntary Movements

  • Conference paper
Dynamic Interactions in Neural Networks: Models and Data

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 1))

Abstract

A motor system called the basal ganglia facilitates movement initiation by removing its powerful inhibition on other motor areas. It may also facilitate activity in the cerebral cortex with disinhibition and ensure sequential processing of motor signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruce, C.J. and Goldberg, M.E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53: 603–635, 1985.

    Google Scholar 

  2. DeLong, M.R. and Georgopoulos, A.P. Motor functions of the basal ganglia. In: Handbook of Physiology, The Nervous System, edited by V.B. Brooks. Bethesda, MD: Am. Physiol. Soc., 1981, sect. 1, part 2, vol. II, chapt. 21, pp. 1017–1061.

    Google Scholar 

  3. Graybiel, A.M. Organization of the nigrotectal connection: an experimental tracer study in the cat. Brain Res. 143: 339–348, 1978.

    Article  Google Scholar 

  4. Hikosaka, O. and Sakamoto, M. Cell activity in monkey caudate nucleus preceding saccadic eye movements. Exp. Brain Res. 63: 659–662, 1986.

    Article  Google Scholar 

  5. Hikosaka, O. and Sakamoto, M. Neural activities in the monkey basal ganglia related to attention, memory and anticipation. Brain Dev. 8: 454–462, 1986.

    Google Scholar 

  6. Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49:1230–1253, 1983.

    Google Scholar 

  7. Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. J. Neurophysiol. 49: 1254–1267, 1983.

    Google Scholar 

  8. Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J. Neurophysiol. 49:1268–1284, 1983.

    Google Scholar 

  9. Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49:1285–1301,1983.

    Google Scholar 

  10. Hikosaka, O. and Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in the monkey superior colliculus. J. Neurophysiol. 53: 266–291, 1985.

    Google Scholar 

  11. Hikosaka, O. and Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in the monkey substantia nigra pars reticulata. J. Neurophysiol. 53: 292–308, 1985.

    Google Scholar 

  12. Huerta, M.F., Krubitzer, L.A. and Kaas, J.H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. subcortical connections. J. Comp. Neurol. 253: 415–439, 1986.

    Article  Google Scholar 

  13. Ilinsky, I.A., Jouandet, M.L. and Goldman-Rakic, P.S. Organization of the nigrothalamocortical systems in the rhesus monkey. J. Comp. Neurol. 236: 315–330, 1985.

    Article  Google Scholar 

  14. Jayaraman, A., Batton, R.R. and Carpenter, M.B. Nigrotectal projections in the monkey: an autoradiographic study. Brain Res. 135: 147–152, 1977.

    Article  Google Scholar 

  15. Karabelas, A.B. and Moschovakis, A.K. Nigral inhibitory termination on efferent neurons of the superior colliculus: an intracellular horseradish peroxidase study in the cat. J. Comp. Neurol. 239: 309–329, 1985.

    Article  Google Scholar 

  16. Parent, A., MaCkey, A. and De Bellefeuille, L. The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neurosci. 10: 1137–1150, 1983.

    Article  Google Scholar 

  17. Percheron, G., Yelnik, J. and Frauds, C. A Golgi analysis of the primate globus pallidus. in. Spatial organization of the striato-pallidal complex. J. Comp. Neurol. 227: 214–227, 1984.

    Article  Google Scholar 

  18. Schell, G.R. and Strick, P.L. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci. 4: 539–560, 1984.

    Google Scholar 

  19. Schlag, J. and Schalg-Rey, M. Evidence for a supplementary eye field. J. Neurophysiol. 57: 179–200, 1987.

    Google Scholar 

  20. Selemon, L.D. and Goldman-Rakic, P.S. Longitudinal topography andinterdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 5: 776–794, 1985.

    Google Scholar 

  21. Sparks, D.L. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66: 118–171, 1986.

    Google Scholar 

  22. Ueki, A. The mode of nigro-thalamic transmission investigated with intracellular recording in the cat. Exp. Brain Res. 49: 116–124, 1983.

    Article  Google Scholar 

  23. Uno, M. and Yoshida, M. Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res. 99: 377–380, 1975.

    Article  Google Scholar 

  24. Wurtz, R.H. Response of striate cortex neurons during rapid eye movements in the monkey. J. Neurophysiol. 32: 975–986, 1969.

    Google Scholar 

  25. Wurtz, R.H. and Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3: 189–226, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Hikosaka, O. (1989). Role of Basal Ganglia in Initiation of Voluntary Movements. In: Arbib, M.A., Amari, Si. (eds) Dynamic Interactions in Neural Networks: Models and Data. Research Notes in Neural Computing, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4536-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4536-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96893-3

  • Online ISBN: 978-1-4612-4536-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics