Skip to main content

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 1))

  • 149 Accesses

Abstract

TLU (Threshold Logic Unit) representation and training provides a simplified formal model of neuron-like computation. Based on this abstract model, various formal properties and acceleration techniques are considered, the results of which appear relevant to observed biological phenomina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham WC, Goddard GV (1983) Asymmetric relations between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature (London) 305:717–719

    Article  Google Scholar 

  • Abraham WC, Goddard GV (1985) Multiple traces of neural activity in the hippocampus. In: Weinberger NM, McGaugh JL, Lynch G (eds) Memory systems of the brain. The Guilford Press, New York

    Google Scholar 

  • Abraham WC, Goddard GV (1984) Functions of afferent coactivity in long-term potentiation. In: Lynch, G, McGaugh JL, Weinberger NM (eds) Neurophysiology of learning and memory. Guilford Press, New York

    Google Scholar 

  • Abrams TW (1985) Cellular studies of an associative mechanism for classical conditioning in Aplysia. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York

    Google Scholar 

  • Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cog Sci 9:147–169

    Article  Google Scholar 

  • Adrain ED (1946) The physical background of perception. Clarendon Press, Oxford, Eng.

    Google Scholar 

  • Alger BE, Teyler TJ (1976) Long-term and short-term plasticity in CA1, CA3 and dentate regions of the rat hippocampal slice. Brain Res 110:463–480

    Article  Google Scholar 

  • Allan LG (1980) A note on measurement of contingency between two binary variables in judgement tasks. Bull Psychonomic Society 15:147–149

    Google Scholar 

  • Anderson DC, O’Farrell T, Formica R, Caponegri V (1969a) Preconditioning CS exposure: variation in the place of conditioning and presentation. Psychon Sci 15:54–55

    Google Scholar 

  • Anderson DC, Wolf D, Sullivan P (1969b) Preconditioning exposures to the CS: Variations in place of testing. Psychon Sci 14:233–235

    Google Scholar 

  • Anderson P, Sunberg SH, Sveen O, Swann JW, Wigstrom H (1980) Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J Physiol 302:463–482

    Google Scholar 

  • Baker AG, Mercier P (1982a) Prior experience with the conditioning events: Evidence for a rich cognitive representation. In: Commons ML, Herrnstein RJ, Wagner AR (eds) Quantitative analyses of behavior (vol. III). Ballinger, Cambridge, MA

    Google Scholar 

  • Baker AG, Mercier P (1982b) Extinction of the context and latent inhibition. Learning and Motivation 13:391–416

    Article  Google Scholar 

  • Balsam PD (1985) The functions of context in learning and performance. In: Balsam PD, Tomic A (eds) Context and learning. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Barlow HB (1972) Single units and sensation: A neuron doctrine for perceptual psychology. Perception 1:371–394

    Article  Google Scholar 

  • Barrionuevo G, Brown TH (1983) Associative long-term synaptic potentiation in hippocampal slices. Proc Natl Acad Sci 80:7347–7351

    Article  Google Scholar 

  • Barsalov LW, Bower GH (1984) Discrimination nets as psychological models. Cog Sci 8:1–26

    Article  Google Scholar 

  • Barto AG (1985) Learning by statistical cooperation of self-interested neuron-like computing elements. Human Neurobiol 4:229–256

    Google Scholar 

  • Belnap ND Jr (1977) A useful four-valued logic. In: Modern uses of multiple-valued logic. Dunn JM, Epstein, G (eds) Reidel Publishing, Boston, MA

    Google Scholar 

  • Bindra D (1976) A theory of intelligent behavior. Wiley, New York

    Google Scholar 

  • Bliss TVP, Dolphin AC (1984) Where is the locus of long-term potentiation? In: Lynch G, McGaugh JL, Weinberger NM (eds) Neurobiology of learning and memory. Guilford Press, New York

    Google Scholar 

  • Bourne LE (1970) Knowing and using concepts. Psychol Rev 77:546–556

    Article  Google Scholar 

  • Bourne LE, Restle F (1959) Mathematical theory of concept identification. Psychol Rev 66:278–296

    Article  Google Scholar 

  • Bourne LE, Dominowski RL, Loftus EF (1979) Cognitive Processes. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Brown R, Kulik J (1977) Flashbulb memories. Cognition 5:73–99

    Article  Google Scholar 

  • Bulgarella RG, Archer EJ (1962) Concept identification of auditory stimuli as a function of amount of relevant and irrelevant information. J Exp Psychol 63:254–257

    Article  Google Scholar 

  • Channell S, Hall G (1983) Contextual effects in latent inhibition with an appetitive conditioning procedure. Animal Learning and Behavior 11:67–74

    Article  Google Scholar 

  • Cohen NJ (1984) Preserved learning capacity in amnesia: Evidence for multiple memory systems. In: Squire LR, Butters N (eds) Neuropsychology of memory. Guilford Press, New York

    Google Scholar 

  • Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210:207–210

    Article  Google Scholar 

  • Collins L, Pearce JM (1985) Predictive accuracy and the effects of partial reinforcement on serial autoshaping. J Exp Psych, Animal Behav Processes 11:548–564

    Article  Google Scholar 

  • Crick FHC, Asanuma C (1986) Certain aspects of the anatomy and physiology of the cerebral cortex. In: McClelland JL, Rumelhart DE (eds) Parallel distributed processing v. 2. MIT Press, Cambridge, MA

    Google Scholar 

  • Dexter WR, Merrill HK (1969) Role of contextual discrimination in fear conditioning. J Comp Physiol Psych 69:677–681

    Article  Google Scholar 

  • Dickinson A (1980) Contemporary animal learning theory. Cambridge University Press, New York

    Google Scholar 

  • Domjan M, Burkhard B (1982) The principles of learning and behavior. Brooks/Cole Publishing Company, Monterey, CA

    Google Scholar 

  • Douglas RJ (1967) The hippocampus and behavior. Psychol Bull 67:416–442

    Article  Google Scholar 

  • Douglas RJ (1972) Pavlovian conditioning and the brain. In: Boakes RA, Halliday MS (eds) Inhibition and learning. Academic Press, London

    Google Scholar 

  • Doyle J (1979) A truth maintenance system. Artificial Intelligence 12:231–272

    Article  MathSciNet  Google Scholar 

  • Duda R, Hart P (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  • Dunwiddie T, Lynch G (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: Localization and frequency dependency. J Physiol 276:353–367

    Google Scholar 

  • Gabriel M, Foster K, Orona E, Saltwick SE, Stanton M (1980) Neuronal activity of cingulate cortex, anteroventral thalamus, and hippocampal formation in discriminative conditioning: Encoding and extraction of the significance of conditional stimuli. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology, vol. 9. Academic Press, New York

    Google Scholar 

  • Gabriel M, Orona E, Foster K (1982) Mechanism and generality of stimulus significance coding in a mammalian model system. In: Woody CD (ed) Advances in behavioral biology v. 26. Plenum Press, New York

    Google Scholar 

  • Garrud P, Rawlins JNP, Mackintosh NJ, Goodall G, Cotton MM, Feldon J (1984) Successful overshadowing and blocking in hippocampectomized rats. Behav Brain Res 12:29–53

    Article  Google Scholar 

  • Gelperin A, Hopfield JJ, Tank DW (1985) The logic of Limax learning. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press New York

    Google Scholar 

  • Gibbon J, Berryman R, Thompson RL (1974) Contingency spaces and measure in classical and instrumental conditioning. J Exp Analysis Behav 21:585–605

    Article  Google Scholar 

  • Gibbon J (1981) The contingency problem in autoshaping. In: Locurto CM, Terrace HS, Gibbon J (eds) Autoshaping and conditioning theory. Academic Press, New York

    Google Scholar 

  • Gluck MA, Thompson RF (1987) Modeling the neural substrates of associative learning and memory: A computational approach. Psychol Rev 94:176–191

    Article  Google Scholar 

  • Gray JA (1982) The neuropsychology of anxiety: An enquiry into the function of the septo-hippocampal system. Oxford Univ Press, Oxford, Eng

    Google Scholar 

  • Gray JA (1984) The hippocampus as an interface between cognition and emotion. In: Roitblat HL, Bever TG, Terrace HS (eds) Animal cognition. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Hall G, Channell S (1985a) Differential effects of contextual change on latent inhibition and on the habituation of an orienting response. J Exp Psych: Animal Behav Processes 11:470–481

    Article  Google Scholar 

  • Hall G, Channell S (1985b) Latent inhibition and conditioning after preexposure to the training context. Learning and Motivation 16:381–397

    Article  Google Scholar 

  • Hall G, Channell S (1986) Context specificity of latent inhibition in taste aversion learning. Quart J Expl Psych 35B:121–139

    Google Scholar 

  • Hall G, Minor H (1984) A search for context-stimulus associations in latent inhibition. Quart J Exp Psych 36B:145–169

    Google Scholar 

  • Hammond LJ, Paynter WE Jr (1983) Probabilistic contingency theories of animal conditioning: A critical analysis. Learning and Motivation 14:527–550

    Article  Google Scholar 

  • Hampson SE, Kibler DA (1983) A Boolean complete neural model of adaptive behavior. Biol Cybern 49:9–19

    Article  MATH  Google Scholar 

  • Hampson SE, Volper DJ (1987) Disjunctive models of Boolean category learning. Biol Cybern 56, 121–137

    Article  MATH  Google Scholar 

  • Hampson SE, Volper D (1986) Linear function neurons: Structure and training. Biol Cybern 53:203–217

    Article  MATH  Google Scholar 

  • Hawkins RD, Kandel ER (1984) Is there a cell-biological alphabet for simple forms of learning? Psychol Rev 91:375–391

    Article  Google Scholar 

  • Hearst E (1984) Absence as information: some implications for learning, performance and representational processes. In: Roitblat HL, Bever TG, Terrace HS (eds) Animal cognition. Lawrence Erlbaum, Hillsdale NJ

    Google Scholar 

  • Hearst E (1987) Extinction reveals stimulus control: Latent learning of feature negative discriminations in pigeons. J Exp Psych: Animal Behav Processes 13:52–64

    Article  Google Scholar 

  • Hearst E (1978) Stimulus relationships and feature selection in learning and behavior. In: Hulse SH, Fowler H, Honig WK (eds) Cognitive processes in animal behavior. Lawrence Erlbaum, Hillsdale NJ

    Google Scholar 

  • Herrnstein RJ (1985) Riddles of natural categorization. Philos Trans R Soc Lond B 308:129–144

    Article  Google Scholar 

  • Hinton GE, Sejnowski TJ, Ackley DH (1984) Boltzmann machines: Constraint satisfaction networks that learn. Carnegie-Mellon Univ. tech. report CMU-CS-84-119

    Google Scholar 

  • Honey RC, Schachtman TR, Hall G (1987) Partial reinforcement in serial autoshaping: The role of attentional and associative factors. Learning and Motivation 18:288–300

    Article  Google Scholar 

  • Hunt E, Martin J, Store P (1966) Experiments in induction. Academic Press, New York

    Google Scholar 

  • Jenkins HM, Sainbury RS (1970) Discrimination learning with the distinctive feature on positive and negative trials. In: Mostofsky D (ed) Attention: contemporary theory and analysis. Appleton Century Crafts, New York

    Google Scholar 

  • Jenkins HM, Barnes RA, Barrera FJ (1981) Why autoshaping depends on trial spacing. In: Locurto CM, Terrace HS, Gibbon J, (eds) Autoshaping and conditioning theory. Academic Press, New York

    Google Scholar 

  • Kamin LJ (1969) Predictability, surprise, attention and conditioning. In: Campbell BA, Church RM (eds) Punishment and aversive behavior. Appleton-Century-Crofts, New York

    Google Scholar 

  • Kandel ER (1979) Behavioral biology of Aplysia. W.H. Freeman and Company, San Francisco, CA.

    Google Scholar 

  • Kandel ER (1976) Cellular basis of behavior. W.H. Freeman and Company, San Francisco, CA.

    Google Scholar 

  • Kandel ER, Schwartz J (eds) (1985) Principles of neural science. Elsevier North-Holland, New York

    Google Scholar 

  • Kaye H, Pearce JM (1984a) The strength of the orienting response during Pavlovian conditioning. J Exp Psych: Animal Behav Processes 10:90–107

    Article  Google Scholar 

  • Kaye H, Pearce JM (1984b) The strength of the orienting response during blocking. Quart J Exp Psych 36B:131–144

    Google Scholar 

  • Kaye H, Pearce JM (1987) Hippocampal lesions attenuate latent inhibition and the decline of the orienting response in rats. Quart J Exp Psych 39B:107–125

    Google Scholar 

  • Kaye H, Preston GC, Szabo L, Druiff H, Mackintosh NJ (1987) Context specificity of conditioning and latent inhibition: Evidence for a dissociation of latent inhibition and associative interference. Quart J Exp Psych 39B:127–145

    Google Scholar 

  • Kuffler SW, Nicholls JG, Martin AR (1984) From neuron to brain: A cellular approach to the function of the nervous system. Sinaver Associates, Sunderland, MA.

    Google Scholar 

  • Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biol Cybern 51:223–237

    Article  Google Scholar 

  • Levy WB (1985) Associative changes at the synapse: LTP in the hippocampus. In: Levy WB, Anderson JA, Lehmkuhle S (eds) Synaptic modification, neuron selectivity, and nervous system organization. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Livingston RB (1967b) Reinforcement. In: Quarton GC, Melnechuck T, Schmitt FO (eds) The neurosciences. Rockefeller Univ. Press, New York 568–576.

    Google Scholar 

  • Livingston RB (1967a) Brain circuitry relating to complex behavior. In: The neurosciences. Quarton GC, Melnechuck T, Schmitt FO (eds) Rockefeller Univ. Press, New York 499–514

    Google Scholar 

  • Lolordo VM (1979a) Selective associations. In: Dickinson A, Boakes RA (eds) Mechanisms of learning and motivation. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Lolordo VM (1979b) Classical conditioning: The Pavlovian perspective. In: Bitterman ME, Lolordo VM, Overmier JB, Rashotte ME (eds) Animal learning: Survey and analysis. Plenum Press, New York

    Google Scholar 

  • Lovibond PF, Preston GS, Mackintosh NJ (1984) Context specificity of conditioning, extinction, and latent inhibition. J Exp Psych: Animal Behav Processes 10:360–375

    Article  Google Scholar 

  • Lubow RE, Rifkin B, Alek M (1976) The context effect: The relationship between stimulus preexposure and environmental preexposure determines subsequent learning. J Exp Psych: Animal Behav Processes 2:38–47

    Article  Google Scholar 

  • Lynn R (1966) Attention, arousal and the orientation reaction. Pergamon Press, New York

    Google Scholar 

  • Mackintosh NJ (1978) Cognitive or associative theories of conditioning: Implications of an analysis of blocking. In: Hulse SH, Fowler H, Honig WK (eds) Cognitive process in animal behavior. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Mackintosh NJ (1983) Conditioning and associative learning. Oxford Univ. Press, New York

    Google Scholar 

  • Mackintosh NJ (1985a) Contextual specificity or state dependency of human and animal learning. In: Nilsson L, Archer T (eds) Perspectives on learning and memory. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Mackintosh NJ (1985b) Varieties of conditioning. In: Weinberger NM, McGaugh JL, Lynch G (eds) Memory systems of the brain. The Guilford Press, New York

    Google Scholar 

  • Mackintosh NJ (1975) A theory of attention: Variations in the associability of stimuli with reinforcement. Psychol Rev 82:276–298

    Article  Google Scholar 

  • Mazur JE (1986) Learning and behavior. Pretice-Hall, Englewood Cliffs

    Google Scholar 

  • McNaughton BL (1983) Activity dependent modulation of hippocampal synaptic efficacy: Some implications for memory processes. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, New York

    Google Scholar 

  • Medin DL (1983) Structural principles in categorization. In: Tighe TJ, Shepp BE (eds) Perception, cognition and development. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Medin DL, Schwanenftugel PJ (1981) Linear separability in classification learning. J Exp Psychol Hum Learn Mem 7:353–368

    Google Scholar 

  • Mervis CB, Rosch E (1981) Categorization of natural objects. Ann Rev Psychol 32:89–115

    Article  Google Scholar 

  • Miller RR, Schachtman TR (1985) The several roles of context at the time of retrieval. In: Context and learning. Balsam PD, Tomie A (eds) Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Minsky M, Papert S (1972) Perceptrons. MIT Press, Cambridge, MA.

    Google Scholar 

  • Moore JW, Solomon PR (1984) Forebrain — brain stem interaction: Conditioning and the hippocampus. In: Squire LR, Butters N (eds) Neuropsychology of memory. Guilford Press, New York

    Google Scholar 

  • Moore JW, Stickney KJ (1980) Formation of attentional-associative networks in real time: Role of the hippocampus and implications for conditioning. Physiol Psych 8:207–217

    Google Scholar 

  • Moore JW, Stickney KJ (1982) Goal tracking in attentional-associative networks: Spatial learning and the hippocampus. Physiol Psych 10:202–208

    Google Scholar 

  • Morris R, Baker M (1984) Does long-term potentiation/synaptic enhancement have anything to do with learning or memory. In: Squire LR, Butters N (eds) Neuropsychology of memory. Guilford Press, New York

    Google Scholar 

  • Muroga S (1971) Threshold logic and its applications. Wiley, New York

    MATH  Google Scholar 

  • Nadel L, Willner J (1980) Context and conditioning. A place for space. Physiol Psych 8:218–228

    Google Scholar 

  • Nadel L, Willner J, Kurz EM (1985) Cognitive maps and environmental context. In: Balsam PD, Tomie A (eds) Context and learning. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Neisser U, Weene P (1962) Hierarchies in concept attainment. J Exp Psychol 64:640–645

    Article  Google Scholar 

  • Nilsson NJ (1965) Learning machines. McGraw-Hill, New York

    MATH  Google Scholar 

  • Pearce JM (1987) An introduction to animal cognition. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Pearce JM, Hall GA (1980) A model of Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    Article  Google Scholar 

  • Rescorla RA (1972) Informational variables in Pavlovian conditioning. In: Bower GH (ed) Psychology of learning and motivation, vol. 6. Academic Press, New York

    Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning. In: Black AH, Prokasy WF (eds) Classical conditioning II. Appleton-Century-Crofts, New York

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds), Parallel distributed processing. MIT Press, Cambridge MA

    Google Scholar 

  • Sahley CL (1984) Behavior theory and invertebrate learning. In: Marler P, Terrace HS (eds) The biology of learning. Springer-Verlag, New York

    Google Scholar 

  • Sahley C, Rudy JW, Gelperin A (1981) An analysis of associative learning in a terrestrial mollusc. J Comp Physiol 144:1–8.

    Article  Google Scholar 

  • Sahley CL, Rudy JW, Gelperin A (1984) Associative learning in a mollusc: A comparative analysis. In: Alkon DL, Farley J (eds) Primary neural substrates on learning and behavioral change. Cambridge Univ. Press, New York

    Google Scholar 

  • Salafia WR (1987) Pavlovian conditioning, information processing, and the hippocampus. In: Gormezano I, Prokasy WF, Thompson RF (eds) Classical conditioning (3rd ed) Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Schmajuk NA, Moore JW (1985) Real-time attentional models for classical conditioning and the hippocampus. Physiol Psych 13:278–290

    Google Scholar 

  • Schwartz B (1984) Psychology of learning and behavior. W. W. Norton and Company, New York

    Google Scholar 

  • Schwartzkroin PA, Taube JS (1986) Mechanisms underlying long-term potentiation. In: Alkon DL, Woody CD (eds) Neural mechanisms of conditioning. Plenum Press, New York

    Google Scholar 

  • Scott GK, Piatt JR (1985) Model of response-reinforcer contingency. J Exp Psychol: Animal Behav Processes 11:152–171

    Article  Google Scholar 

  • Seifert W (ed) (1983) Neurobiology of the hippocampus. Academic Press, New York

    Google Scholar 

  • Shepherd GM (1983) Neurobiology. Oxford Univ. Press, New York

    Google Scholar 

  • Shortliffe EH, Buchanan BG (1975) A model of inexact reasoning in medicine. Math Biosci 23:351–379

    Article  MathSciNet  Google Scholar 

  • Smith EE, Medin DL (1981) Categories and concepts. Harvard Univ. Press, Cambridge, MA

    Google Scholar 

  • Sokolov EH (1960) Neuronal models and the orienting reflex. In: Bazier MAB (ed) The central nervous system and behavior. Josiah Macy Jr. Foundation, New York

    Google Scholar 

  • Sokolov EN (1963) The orienting reflex. Ann Rev Psych 25:545–580

    Google Scholar 

  • Solomon PR (1977) Role of the hippocampus in blocking and conditioned inhibition of the rabbit’s nictitating membrane response. J Comp Physiol Psychol 91:407–417

    Article  Google Scholar 

  • Solomon PR (1979) Temporal versus spatial information processing theories of hippocampal function. Psych Bull 86:1272–1279

    Article  Google Scholar 

  • Solomon PR (1987) Neural and behavioral mechanism involved in learning to ignore irrelevant stimuli. In: Gormezano I, Prokasy WF, Thompson RF (eds) Classical conditioning (3rd ed) Hillsdale, NJ: Lawrence Erlbaum Associates (1987)

    Google Scholar 

  • Solomon PR, Moore JW (1975) Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits following dorsal hippocampal ablation. J Comp Physiol Psychol 89:1192–1203

    Article  Google Scholar 

  • Squire LR (1982) The neuropsychology of human memory. Annu Rev Neurosci 5:241–273

    Article  Google Scholar 

  • Squire LR (1983) The hippocampus and the neuropsychology of memory. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press New York

    Google Scholar 

  • Squire LR, Cohen NJ (1984) Human memory and amnesia. In: Lynch G, McGaugh JL, Weinberger NM (eds) Neurobiology of learning and memory. Guilford Press, New York

    Google Scholar 

  • Squire LR, Cohen NJ, Nadel L (1984) The medial temporal region and memory consolidation: A new hypothesis. In: Weingartner H, Parker E (eds) Memory consolidation. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Tesauro G (1986) Simple neural models of classical conditioning. Biol Cybern 55:187–200

    MathSciNet  Google Scholar 

  • Teyler TJ, Discenna P (1984) Long-term potentiation as a candidate mnemonic device. Brain Res Rev 7:15–28

    Article  Google Scholar 

  • Teyler TJ, Discenna P (1987) Long-term potentiation. Ann Rev Neurosci 10:131–161

    Article  Google Scholar 

  • Volper DJ, Hampson SE (1986) Connectionistic models of Boolean category representation. Biol Cybern 54:393–406

    Article  MATH  Google Scholar 

  • Volper DJ, Hampson SE (1987) Learning and using specific instances. Biol Cybern 57:57–71

    Article  Google Scholar 

  • Wagner AR (1976) Priming in STM: An information processing mechanism for self-generated or retrieval-generated depression in performance. In: Tighe TJ, Leaton RN (eds) Habituation: perspectives from child development, animal behavior and neurophysiology. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Wagner AR (1978) Expectancies and the priming of STM. In: Hulse SH, Fowler H, Honig WK (eds) Cognitive processes in animal behavior. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Wagner AR (1979) Habituation and memory. In: Dickinson A, Boakes RA (eds) Mechanisms of learning and motivation. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Wattenmaker WD, Dewey GI, Murphy TD, Medin DL (1986) Linear separability and concept learning: context, relational properties, and concept naturalness. Cog Psych 18:158–194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Hampson, S.E., Volper, D.J. (1989). Feature Handling in Learning Algorithms. In: Arbib, M.A., Amari, Si. (eds) Dynamic Interactions in Neural Networks: Models and Data. Research Notes in Neural Computing, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4536-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4536-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96893-3

  • Online ISBN: 978-1-4612-4536-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics