Skip to main content

Visual Plasticity in the Auditory Pathway: Visual Inputs Induced into Auditory Thalamus and Cortex Illustrate Principles of Adaptive Organization in Sensory Systems

  • Conference paper
Dynamic Interactions in Neural Networks: Models and Data

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 1))

Abstract

We have induced, by appropriate surgery in newborn ferrets, retinal projections into the medial geniculate nucleus, the principal auditory thalamic nucleus. In operated animals studied as adults, retinal ganglion cells that give rise to the projection have small and medium sized somata and heterogeneous dendrite morphologies. Each retina projects to the auditory thalamus in patchy fashion. Various nuclei in auditory thalamus project normally to auditory cortex. Visual cells in auditory thalamus have circular receptive fields and receive input from slowly conducting afferents characteristic of retinal W cells. Many visual cells in primary auditory cortex have oriented receptive fields that resemble those of complex cells in striate cortex. Primary auditory cortex also contains a two dimensional visual field map. Our results carry several implications for sensory cortical function. A parsimonious explanation for the visual receptive field properties in auditory cortex is that sensory cortex carries out certain stereotypical transformations on input regardless of modality. The response features of visual cells and the two dimensional visual field map in primary auditory cortex appear to be products of adaptive organization arising from a highly divergent thalamocortical projection characteristic of the auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aitkin, L.M., Irvine, D.R.F. & Webster, W.R. (1984) Central neural mechanisms of hearing. In: Handbook of Physiology: The Nervous System III, Amer. Physiol. Soc., Bethesda, MD, pp. 675–737.

    Google Scholar 

  • Campbell, G. & Frost, D.O. (1987) Target-controlled differentiation of axon terminals and synaptic organization. Proc. Natl. Acad. Sci. USA, 84: 6929–6933.

    Article  Google Scholar 

  • Cucchiaro, J. & Guillery, R.W. (1984) The development of the retinogeniculate pathways in normal and albino ferrets. Proc. R. Soc. Lond. B. 223: 141–164.

    Article  Google Scholar 

  • Cunningham, T.J. (1976) Early eye removal produces extensive bilateral branching in the rat. Science. 194: 857–859. Devor, M. (1975) Neuroplasticity in the sparing or deterioration of function after early olfactory tract lesions. Science. 190: 998–1000.

    Article  Google Scholar 

  • Dreher, B., Leventhal A.G., & Hale, P.T. (1980) Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18. J. Neurophysiol., 44: 804–826.

    Google Scholar 

  • Edelman, G.M. (1978) Group selection and phasic reentrant signaling: a theory of higher brain function. In: The Mindful Brain. M.I.T. Press.

    Google Scholar 

  • Edelman, G.M. and Finkel, L.H. (1984) Neuronal group selection in the cerebral cortex. In: Dynamic Aspects of Neocortical Function. ed. by G.M. Edelman, W.E. Gall, W.M. Cowan. Wiley-Interscience.

    Google Scholar 

  • Ferster, D. & Lindstrom, S. (1983) An intracellular analysis of geniculocortical connectivity in area 17 of the cat. J. Physiol.. Lond.. 342: 181–215.

    Google Scholar 

  • Finkel, L.H. and Edelman, G.M. (1987) Population rules for synapses in networks. In: Synaptic Function. ed. by G.M. Edelman, W.E. Gall and W.M. Cowan. Wiley-Interscience.

    Google Scholar 

  • Finlay, B.L., Wilson K.G., & Schneider, G.E. (1979) Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: Topography and functional capacity. J. Comp. Neurol., 183: 721–740.

    Article  Google Scholar 

  • Frost, D.O. (1981) Ordered anomalous retinal projections to the medial geniculate, ventrobasal and lateral posterior nuclei. J. Comp. Neurol., 203: 227–256.

    Article  Google Scholar 

  • Frost, D.O. (1986) Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study. J. Comp. Neurol., 252: 95–105.

    Article  Google Scholar 

  • Frost, D.O. & Metin, C. (1985) Induction of functional retinal projections to the somatosensory system. Nature, 317: 162–164.

    Article  Google Scholar 

  • Gilbert, C D. & Wiesel, T.N. (1979) Morphology and intracortical projections of functionally characterized neurones in cat visual cortex. Nature, 3: 120–125.

    Article  Google Scholar 

  • Graziadei, P.P.C., Levine, R.R. & Monti-Graziadei, G.A. (1979) Plasticity of connections of the olfactory sensory neuron: regeneration into the forebrain following bulbectomy in the neonatal mouse. Neuroscience, 4: 713–727.

    Article  Google Scholar 

  • Hoffmann, K.-P. (1973) Conduction velocity in pathways from retina to superior colliculus in the cat: a correlation with receptive field properties. J. Neurophysiol., 36: 409–424.

    Google Scholar 

  • Imig, T.J. and Adrian, H.O. (1977) Binaural columns in the primary field (Al) of cat auditory cortex. Brain Res. 138: 241–257.

    Article  Google Scholar 

  • Jones, E.G. (1984) Identification and classification of intrinsic circuit elements in the neocortex. In: Dynamic Aspects of Neocortical Function, ed. by G.M. Edelman, W.E. Gall, W.M. Cowan. Wiley-Interscience.

    Google Scholar 

  • Jones, E.G. (1985) The Thalamus. Plenum.

    Google Scholar 

  • Kelly, J.G., Judge, P.W. & Phillips, D.P. (1986) Representation of the cochlea in primary auditory cortex of the ferret (Mustela putorius). Hearing Res. 24: 111–115.

    Article  Google Scholar 

  • Linsker, R. (1986) From basic network principles to neural architecture: Emergence of orientation-selective cells. Proc. Natl. Acad. Sci. USA. 83: 8390–8394.

    Article  Google Scholar 

  • Lorente de No, R. (1938) Physiology of the Nervous System. Oxford Univ. Press.

    Google Scholar 

  • Lund, R.D. (1969) Synaptic patterns of the superficial layers of the superior colliculus of the rat. J. Comp. Neurol. 135: 179–208.

    Article  Google Scholar 

  • Lund, R.D. & Lund, J.S. (1976) Plasticity in the developing visual system: the effects of retinal lesions made in young rats. J. Comp. Neurol., 169: 133–154.

    Article  Google Scholar 

  • McConnell, S.K. & LeVay, S. (1986) Anatomical organization of the visual system of the mink, Mustela vison. J. Comp. Neurol. 250: 109–132.

    Article  Google Scholar 

  • Mendelson, J.R. & Cynader, M.S. (1985) Sensitivity of cat primary auditory cortex (A1) neurons to the direction and rate of frequency modulation. Brain Res. 327: 331–335.

    Article  Google Scholar 

  • Merzenich, M.M., Jenkins, W.M. and Middlebrooks, J.C. (1984) Observations and hypotheses on special organizational features of the central auditory nervous system. In: Dynamic Aspects of Neocortical Function, ed. by G.M. Edelman, W.E. Gall, W.M. Cowan. Wiley-Interscience.

    Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J., Nelson, R.J., Sur, M., & Felleman, D. (1983) Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation. Neuroscience, 8: 33–55.

    Article  Google Scholar 

  • Middlebrooks, J.C. and Zook, J.M. (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. J. Neurosci. 3: 203–224.

    Google Scholar 

  • Mitani, A., Shimokouchi, M., Itoh, K., Nomura, S., Kudo, M. & Mizuno, N. (1985) Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. J. Comp. Neurol., 235: 430–447.

    Article  Google Scholar 

  • Mountcastle, V.B. (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: The Mindful Brain. M.I.T. Press.

    Google Scholar 

  • Palay, S.L. and Chan-Palay, V. (1974) Cerebellar Cortex: Cytology and Organization. Springer.

    Google Scholar 

  • Roe, A.W., Garraghty, P.E. & Sur, M. (1987) Retinotectal W cell plasticity: experimentally induced retinal projections to auditory thalamus in ferrets. Soc. Neurosci. Abst., 13: 1023.

    Google Scholar 

  • Schneider, G.E. (1973) Early lesions of the superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav. Evol., 8: 73–109.

    Article  Google Scholar 

  • Shatz, C.J. (1983) The prenatal development of the cat’s retinogeniculate pathway. J. Neurosci., 3: 482–499.

    Google Scholar 

  • Shepherd, G. (1979) The Synaptic Organization of the Brain. Oxford Univ. Press, 2nd ed.

    Google Scholar 

  • Sherman, S.M. & Spear, P.D. (1982) Organization of visual pathways in normal and visually deprived cats. Physiol. Rev., 62: 738–855.

    Google Scholar 

  • So, K.-F., Campbell, G., & Lieberman, A.R. (1985) Synaptic organization of the dorsal lateral geniculate nucleus in the adult hamster. Anat. Embryol., 171: 223–234.

    Article  Google Scholar 

  • Suga, N. (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Dynamic Aspects of Neocortical Function, ed. by G.M. Edelman, W.E. Gall, W.M. Cowan. Wiley-Interscience.

    Google Scholar 

  • Sur, M. & Garraghty, P.E. (1986) Experimentally induced visual responses from auditory thalamus and cortex. Soc. Neuroscience Abst., 12: 592.

    Google Scholar 

  • Sur, M., Garraghty, P.E., & Roe, A.W. (1988) Experimentally induced visual projections into auditory thalamus and cortex. Submitted for publication.

    Google Scholar 

  • Sur, M., Roe, A.W. & Garraghty, P.E. (1987) Evidence for early specificity of the retinogeniculate X cell pathway. Soc. Neurosci. Abstr., 13: 590.

    Google Scholar 

  • Sur, M. & Sherman, S.M. (1982) Linear and nonlinear W cells in C-laminae of the cat’s lateral geniculate nucleus. J. Neurophysiol., 47: 869–884.

    Google Scholar 

  • Tong, L, Spear, P.D., Kalil, R.E., & Callahan, E.C. (1982) Loss of retinal X-cells in cats with neonatal or adult visual cortex damage. Science. 217: 72–75.

    Article  Google Scholar 

  • Vitek, D.J., Schall, J.D., & Leventhal, A.G. (1985) Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret. J. Comp. Neurol., 241: 1–11.

    Article  Google Scholar 

  • Whitfield, I.C. & Evans, E.F. (1965) Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol., 28: 655–672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Sur, M. (1989). Visual Plasticity in the Auditory Pathway: Visual Inputs Induced into Auditory Thalamus and Cortex Illustrate Principles of Adaptive Organization in Sensory Systems. In: Arbib, M.A., Amari, Si. (eds) Dynamic Interactions in Neural Networks: Models and Data. Research Notes in Neural Computing, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4536-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4536-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96893-3

  • Online ISBN: 978-1-4612-4536-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics