Skip to main content

Physical and Psychophysical Measurement of Images

  • Chapter
The Perception of Visual Information

Abstract

In this chapter, we consider how medical images may be evaluated in terms of the information they provide to human observers. Much of this book discusses what is known about the registration and interpretation of visual data within the human visual system. This knowledge, the product of a large psychophysical and neurophysiological literature, is fundamental to any attempt to characterize imagery: it specifies the dimensions, properties, and aspects of images that are informative. An understanding of visual perception should educate our attempts to characterize images by means of physical measurements. Beyond this, the psychophysical literature provides a family of methodologies for assessing diagnostic performance of imaging systems in which human observers serve as pattern recognizers. Psychophysical methods assess psychological response to variation in physical stimuli. These procedures can be applied even where little is known about the underlying recognition process itself or where the physics of the imaging process is not well understood. The best known and most widely used psychophysical method in medical imaging research generates receiver operating characteristic (ROC) curves. The second part of this chapter is devoted to an introduction to current use of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt E.B. Artificial Intelligence. New York: Academic; 1985.

    Google Scholar 

  2. Minsky M. Steps toward artificial intelligence. Proc. IRE 1961; 49: 8–30.

    Article  MathSciNet  Google Scholar 

  3. Chan F.H., Pizer S.M. An ultrasonogram display system using a natural color scale. J. Clin. Ultrasound 1976; 4: 335–338.

    Article  Google Scholar 

  4. Pizer S.M., Zimmerman J.B. Color display in ultrasonography. Ultrasound Med. Biol. 1983; 9: 331–345.

    Article  Google Scholar 

  5. Katsuragawa S., Doi K., MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiology: Detection and characterization of interstitial lung disease in digital chest radiographs. Med. Phys. 1988;15:311–319.

    Article  Google Scholar 

  6. Katsuragawa S., Doi K., MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiology: Classification of normal and abnormal lungs with interstitial disease in chest images. Med. Phys. 1989; 16: 38–44.

    Article  Google Scholar 

  7. Powell G., Doi K., Katsuragawa S. Localization of inter-rib spaces for lung texture analysis and computer-aided diagnosis in digital images. Med. Phys. 1988; 15: 581–587.

    Article  Google Scholar 

  8. Biederman I. Recognition-by-components: A theory of human image understanding. Psychol. Rev. 1987; 94: 115–147.

    Article  Google Scholar 

  9. Berbaum K.S., Franken E.A. Jr., Honda H., McGuire C., Weis R.R., Barloon T. Evaluation of a PACS workstation for interpreting body CT studies. J. Comput. Asst. Tomog. 1990; 14: 853–858.

    Article  Google Scholar 

  10. Berbaum K.S., Smoker W.R.K., Smith W.L. Measurement and prediction of diagnostic performance during radiology training. Am. J. Roentg. 1985; 145: 1305–1311.

    Google Scholar 

  11. Rogers D., Johnston R., Brenton B., Staab E., Thompson B., Perry J. Predicting PACS console requirements from radiologists’ reading habits. Proc SPIE 1985; 536: 88–96.

    Article  Google Scholar 

  12. Rogers D., Johnston R., Hemminger B., Pizer S. Development of and experience with a prototype medical image display. Presented at the Far West Image Perception Conference, Department of Radiology, University of New Mexico, 1986.

    Google Scholar 

  13. Pizer S.M., Johnston R.E., Rogers R.C., Beard D.V. Effective presentation of medical images on an electronic display station. Radiographics 1987; 7: 1267–1274.

    Google Scholar 

  14. Carmody D.P., Nodine C.F., Kundel H.L. Finding lung nodules with and without comparative visual scanning. Percept. Psychophys. 1981; 29: 594–598.

    Article  Google Scholar 

  15. Franken E.A. Jr., Berbaum K.S. Perceptual aspects of cardiac imaging. In: Marcus M.L., Schelbert H.R., Skorton D.J., Wolf G., eds. Cardiac Imaging-Principles and Practice: A Companion to Braunwald’s Heart Disease. Philadelphia: Sanders; 1991: 87–92.

    Google Scholar 

  16. Green D.M., Swets J.A. Signal Detection Theory and Psychophysics. New York: Wiley; 1966.

    Google Scholar 

  17. Wagner R.F., Brown D.G. Unified SNR analysis of medical imaging systems. Phys. Med. Biol. 1985; 30: 498–518.

    Article  Google Scholar 

  18. Rose A. Vision, Human and Electronic. New York: Plenum; 1973.

    Google Scholar 

  19. Wagner R.F. Toward a unified view of radiological imaging systems. Part II: Noisy images. Med. Phys. 1977; 4: 279–296.

    Article  Google Scholar 

  20. Schnitzler A.D. Analysis of noise required contrast and modulation in image detecting and display systems. In: Biberman L.C., ed. Perception of Displayed Information. New York: Plenum; 1973; 119–166.

    Chapter  Google Scholar 

  21. Giger M.L., Doi K. Investigation of basic imaging properties in digital radiography: 3. Effect of pixel size on SNR and threshold contrast. Med. Phys. 1985; 12: 201–208.

    Article  Google Scholar 

  22. Ohara K., Doi K., Metz C.E., Giger M.L. Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectability of simulated stenotic lesions. Med. Phys. 1989; 16: 14–21.

    Article  Google Scholar 

  23. Giger M.L., Doi K. Investigation of basic imaging properties in digital radiography. 1. Modulation transfer function. Med. Phys. 1984; 11: 287–293.

    Article  Google Scholar 

  24. Dainty J.C., Shaw R. Image Science. New York: Academic; 1974.

    Google Scholar 

  25. Schade O. Optical and photoelectric analog of the eye. J. Opt. Soc. Am. 1956; 46: 721–739.

    Article  ADS  Google Scholar 

  26. Morgan R.H. Threshold visual perception and its relationship to photon fluctuations and sine-wave response. Am. J. Roentg. 1965; 93: 982–997.

    Google Scholar 

  27. Sorenson J.A., Phelps M.E. Physics in Nuclear Medicine (2nd ed.). New York: Grune & Stratton; 1987; 115–142.

    Google Scholar 

  28. Kijewski M.F., Judy P.F. The noise-power spectrum of CT images. Phys. Med. Biol. 1987; 32: 565–575.

    Article  Google Scholar 

  29. Moore S.C., Kijewski M.F., Mueller S.P., Holman B.L. SPECT image noise power: effects of nonstationary projection noise and attenuation compensation. J. Nucl. Med. 1988; 29: 1704–1709.

    Google Scholar 

  30. Giger M.L., Doi K., Metz C.E. Investigation of basic imaging properties in digital radiography. 2. Noise Wiener spectrum. Med. Phys. 1984; 11: 797–805.

    Article  Google Scholar 

  31. Bracewell R.N. The Fourier Transform and its Applications (2nd ed.). New York: McGraw-Hill; 1978.

    Google Scholar 

  32. Riederer S.J., Pelc N.J., Chester D.A. The noise power spectrum in computed X-ray tomography. Phys. Med. Biol. 1978; 23: 446–454.

    Article  Google Scholar 

  33. Sandrik J.M., Wagner R.F. Absolute measures of physical image quality: Measurement and application to radiographic magnification. Med. Phys. 1982; 9: 540–549.

    Article  Google Scholar 

  34. Wagner R.F., Brown D.G., Pastel M.S. Application of information theory to the assessment of computed tomography. Med. Phys. 1979; 6: 83–94.

    Article  Google Scholar 

  35. Hanson K.M. Detectability in computed tomographic images. Med. Phys. 1979; 6: 441–451.

    Article  Google Scholar 

  36. Judy P., Swensson R.G., Szulc M. Lesion detection and signal-to-noise ratio in CT images. Med. Phys. 1981; 8: 13–23.

    Article  Google Scholar 

  37. Cohen G. Contrast detail analysis of imaging systems: Caveats and kudos. In: Doi K., Lanzl L. and Lin P.J., eds. Recent Developments in Digital Imaging (AAPM Medical Physics Monograph 12). New York: American Institute of Physics, 1985; 141–159.

    Google Scholar 

  38. Cohen G., McDaniel D.L., Wagner L.K. Analysis of variations in contrast detail experiments. Med. Phys. 1984; 11: 469–473.

    Article  Google Scholar 

  39. Wald A. Statistical Decision Functions. New York: Wiley; 1950.

    MATH  Google Scholar 

  40. Peterson W.W., Birdsall T.G., Fox W.C. The Theory of Signal Detectibility. Trans. IRE Prof. Grp. Inform. Theory 1954; PGIT-4: 171–212.

    Google Scholar 

  41. Tanner W.P., Swets J.A. A decision-making theory of visual detection. Psychol. Rev. 1954; 61: 401–409.

    Article  Google Scholar 

  42. McNicol D. A Primer of Signal Detection Theory. London: Allen & Unwin; 1972.

    Google Scholar 

  43. Gescheider G.A. Psychophysics: Method, Theory, and Application (2nd ed.). Hillsdale: Erlbaum; 1985; 135–166.

    Google Scholar 

  44. Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36.

    Google Scholar 

  45. Hanley J.A., McNeil B.J. A method of comparing receiver operating characteristic curves derived from the same cases. Radiology 1983; 148: 839–843.

    Google Scholar 

  46. Kundel H.L., Revesz G. The evaluation of radiographic techniques by observer tests: Problems, pitfalls and procedures. Invest. Radiol. 1974; 9: 166–173.

    Article  Google Scholar 

  47. Lusted L.B. General problems in medical decision making, with comments on ROC analysis. Semin. Nucl. Med. 1978; 8: 299–306.

    Article  Google Scholar 

  48. McNeil B.J., Keeler E., Adelstein S.J. Primer on certain elements of medical decision making. N. Engl. J. Med. 1975; 293: 211–215.

    Article  Google Scholar 

  49. McNeil B.J., Hanley J.A. Statistical approaches to the analysis of receiver operating characteristics (ROC) curves. Med. Decis. Making 1984; 4: 137–150.

    Article  Google Scholar 

  50. McNeil B J., Hanley J.A., Funkenstein H.H., Wallman J. Paired receiver operating characteristic curves and the effect of history on radiographic interpretation: CT of the head as a case study. Radiology 1983; 149: 75–77.

    Google Scholar 

  51. Metz C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978; 8: 283–298.

    Article  Google Scholar 

  52. Metz C.E. ROC methodology in radiographic imaging. Invest. Radiol. 1986; 21: 720–733.

    Article  Google Scholar 

  53. Swets J.A. ROC analysis applied to the evaluation of medical imaging techniques. Invest. Radiol. 1979; 14: 109–121.

    Article  Google Scholar 

  54. Swets J.A. Indices of discrimination or diagnostic accuracy: Their ROCs and implied models. Psychol. Bull. 1986; 99: 100–117.

    Article  Google Scholar 

  55. Swets J.A. Form of empirical ROCs in discrimination and diagnostic tasks: Implications for theory and measurement of performance. Psychol. Bull. 1986; 99: 181–198.

    Article  Google Scholar 

  56. Swets J.A., Pickett R.M. Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. New York: Academic; 1982.

    Google Scholar 

  57. Metz C.E. Some practical issues of experimental design and data analysis in radiological ROC studies. Invest. Radiol. 1989; 24: 234–245.

    Article  Google Scholar 

  58. Swets J.A. Is there a sensory threshold. Science 1961; 134: 168–177.

    Article  ADS  Google Scholar 

  59. Dorfman D.D., Alf E. Jr. Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals—rating method data. J. Math. Psychol. 1969; 6: 487–496.

    Article  Google Scholar 

  60. Yerushalmy J. The statistical assessment of the variability in observer perception. Rad. Clin. N. Am. 1969; 7: 381–392.

    Google Scholar 

  61. Revesz G., Kundel H.L., Bonitatibus M. The effect of verification on the assessment of imaging techniques. Invest. Radiol. 1983; 18: 194–198.

    Article  Google Scholar 

  62. Ker M., Seeley G.W., Stempski M.O., Patton D. A protocol for verifying truth of diagnosis. Invest. Radiol. 1988; 23: 485–487.

    Article  Google Scholar 

  63. Ransoholf D.F., Feinstein A.R. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N. Engl. J. Med. 1978; 299: 926–930.

    Article  Google Scholar 

  64. Kundel H.L., Revesz G. The evaluation of radiographic techniques by observer tests: Problems, pitfalls, and procedures. Invest. Radiol. 1974; 9: 166–172.

    Article  Google Scholar 

  65. Berbaum K.S., Franken E.A. Jr., Dorfman D.D., Rooholamini S.A., Kathol M.C., Barloon T.J., Behlke F.M., Sato Y., Lu C.H., El-Khoury G.Y., Flickinger F.W., Montgomery WJ. Satisfaction of search in diagnostic radiology. Invest. Radiol. 1990; 25: 133–140.

    Article  Google Scholar 

  66. Berbaum K.S., Franken E.A., Rooholamini S., Coffman C.E., Cornell S.H., Cragg A.H., Galvin J.R., Honda H.H., Kao S.C.S., Kimball D.A., Ryals T.J., Sickels W.J., Smith A.P. Time-course of satisfaction of search in diagnostic radiology. Invest. Radiol. 1991; 26: 640–648.

    Article  Google Scholar 

  67. Berbaum K.S., Franken E.A. Jr., Anderson K.L., Dorfman D.D., Erkonen W.E., Farrar G.P., Geraghty J.J., Gleason T.J., MacNaughton M.E., Phillips M.E., Renfrew D.L., Walker C.W., Whitten C.G., Young D.C. The influence of clinical history on visual search with single and multiple abnormalities. Invest. Radiol. 1993; 28: 191–201.

    Article  Google Scholar 

  68. Berbaum K.S., El-Khoury G.Y., Franken E.A. Jr., Kuehn D.M., Meis D.M., Dorfman D.D., Warnock N.G., Thompson B.H., Kao S.C.S., Kathol M.C. Missed fractures resulting from satisfaction of search effect. Emerg. Radiol. 1994; 1:242–249.

    Article  Google Scholar 

  69. Franken E.A. Jr., Berbaum K.S., Lu C.H., Kannam S., Dorfman D.D., Warnock N.G., Simonson T.M., Pelsang R.E. Satisfaction of search in detection of plain film abnormalities in abdominal contrast examinations. Invest. Radiol. 1994; 29: 403–409.

    Article  Google Scholar 

  70. Chakraborty D.P., Winter L.H.L. Free-response methodology: Alternative analysis and a new observer-performance experiment. Radiology 1990; 174: 873–881.

    Google Scholar 

  71. Bunch P.C., Hamilton J.F., Sanderson G.K., Simmons A.H. A free response approach to the measurement and characterization of radiographic observer performance. Proc. SPIE 1977; 127: 124–135.

    Article  Google Scholar 

  72. Swensson R.G. Measuring detection and localization performance. In: Barrett H.H., Gimitro A.F., eds. Information Processing in Medical Imaging. New York: Springer-Verlag; 1993; 525–554.

    Google Scholar 

  73. Metz C.E., Starr S.J., Lusted L.B. Observer performance in detecting multiple radiographic signals. Radiology 1976; 121: 337–347.

    Google Scholar 

  74. Starr S.J., Metz C.E., Lusted L.B., Goodenough D.J. Visual detection and localization of radiographic images. Radiology 1975; 116: 533–538.

    Google Scholar 

  75. Swets J.A., Pickett R.M., Whitehead S.F., Getty D.J., Schnur J.A., Swets J.B., Freeman B.A. Assessment of diagnostic technologies. Science 1979; 205: 753–759.

    Article  ADS  Google Scholar 

  76. Berbaum K.S., Dorfman D.D., Franken E.A. Jr. Measuring observer performance by ROC analysis: Implications and complications. Invest. Radiol. 1989; 24: 228–233.

    Article  Google Scholar 

  77. Cooperstein L.A., Good B.C., Eelkema E.A., et al. The effect of clinical history on chest radiograph interpretations in a PACS environment. Invest Radiol 1990; 25: 670–674.

    Article  Google Scholar 

  78. Rockette H.E. An index for diagnostic accuracy in the multiple disease setting. Acad. Radiol. 1994; 1: 283–286.

    Article  Google Scholar 

  79. Simonson T.M., Yuh W.T.C., Crosby D.L., Michalson L.S., Dorfman D.D., Wiechert R.J., Lee H.J., Berbaum K.S. The value of contrast enhancement in making the correct diagnosis of major brain pathology. Scientific Presentation, American Society of Neuroradiology, 32nd Annual Meeting, Nashville, Tennessee, May 3–7, 1994.

    Google Scholar 

  80. Turing A.M. On computable numbers, with an application to the Entscheidungs problem. Proc. London Math. Soc. (Ser. 2) 1990; 42: 230–265.

    Article  MathSciNet  Google Scholar 

  81. Turing A.M. Computing machinery and intelligence. Mind 1950; 59: 433–460.

    Article  MathSciNet  Google Scholar 

  82. Von Neumann J. The general and logical theory of automata. In: Newman J.R., ed. The World of Mathematics (Vol 4). New York: Simon & Schuster; 1956: 2070–2098.

    Google Scholar 

  83. Hanley J.A. Receiver operating characteristic (ROC) methodology: The state of the art. Crit Rev. Diagn. Imaging 1989; 29: 307–335.

    Google Scholar 

  84. Dorfman D.D., Berbaum K.S., Metz C.E. Receiver operating characteristic analysis: generalization to the population of readers and patients with the jackknife method. Invest. Radiol. 1992; 27: 723–731.

    Article  Google Scholar 

  85. Dorfman D.D., Berbaum K.S., Lenth R.V. Multi-Reader Multi-case ROC methodology: A bootstrap analysis. Acad. Radiol. 1995; 2: 626–633.

    Article  Google Scholar 

  86. Dorfman D.D., Metz C.E. Rejoinder. Acad. Radiol. 1995; 2: S75-S77.

    Google Scholar 

  87. Quenouille M.H. Approximate tests of correlation in time series. J. R. Stat. Soc. (Ser. B) 1949; 11: 68–84.

    MathSciNet  MATH  Google Scholar 

  88. Quenouille M.H. Notes on bias in estimation. Biometrika 1956; 43: 353–360.

    MathSciNet  MATH  Google Scholar 

  89. Tukey J.W. Bias and confidence in not quite large samples. Ann. Math. Stat. 1958; 29: 614. Abstract.

    Google Scholar 

  90. Franken E.A. Jr., Berbaum K.S., Marley S.M., Smith W.L., Sato Y. Evaluation of a PACS workstation for interpreting of neonatal examinations: An ROC study. Invest. Radiol. 1992; 27: 732–737.

    Article  Google Scholar 

  91. Metz C.E., Wang P.L., Kronman H.B. A new approach for testing the significance of differences between ROC curves measured from correlated data. In: Deconink F., ed. Information processing in medical imaging. The Hague: Nijhoff; 1984; 432–445.

    Chapter  Google Scholar 

  92. Toledano A., Gatsonis C. Regression analysis of correlated receiver operating characteristic data. Acad. Radiol. 1995; 2: S30–S36.

    Google Scholar 

  93. Toledano A.T. Generalized estimating equations for repeated ordinal categorical data, with applications to diagnostic medicine. Unpublished doctoral dissertation, Harvard School of Public Health, 1993.

    Google Scholar 

  94. Metz C.E. The Dorfman/Berbaum/Metz method for testing the statistical significance of ROC differences: Validation studies with continuously-distributed data. Presented at the Sixth FarWest Image Perception Conference, Philadelphia, October 13–15, 1995.

    Google Scholar 

  95. Dorfman D.D. RSCORE II. In: Swets J.A., Pickett R.M. Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. New York: Academic; 1982; 208–232.

    Google Scholar 

  96. Rockette H.E., Obuchowski N.A., Gur D. Nonparametric estimation of degenerate ROC data sets used for comparison of imaging systems. Invest. Radiol. 1990; 25: 835–837.

    Article  Google Scholar 

  97. Rockette H.E., Gur D., Kurs-Lasky M., King J.L. On the generalization of the receiver operating characteristic analysis to the population of readers and cases with the jackknife method: An assessment. Acad. Radiol. 1995; 2: 66–69.

    Article  Google Scholar 

  98. Agresti A. Categorical data analysis. New York: Wiley; 1990: 244-245, 249–250.

    MATH  Google Scholar 

  99. Chandler J.P. Subroutine STEPIT: An algorithm that finds the values of the parameters which minimize a given continuous function. A copyrighted program. J.P. Chandler, Copyright, 1965.

    Google Scholar 

  100. Hooke R., Jeeves T.A. Direct search solution of numerical and statistical problems. J. Assoc. Comp. Mach. 1961; 8: 212–229.

    Article  MATH  Google Scholar 

  101. Dorfman D.D., Beavers L.L., Saslow C. Estimation of signal detection theory parameters from rating-method data: A comparison of the method of scoring and direct search. Bull. Psychon. Soc. 1973; 1: 207–208.

    Google Scholar 

  102. Dorfman D.D., Berbaum K.S. Degeneracy and discrete ROC rating data. Acad. Radiol. 1995; 2: 907–915.

    Article  Google Scholar 

  103. Metz C.E. “Proper” binormal ROC curves: Theory and maximum likelihood estimation. Presented at the Sixth FarWest Image Perception Conference, Philadelphia, October 13–15, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berbaum, K.S., Dorfman, D.D., Madsen, M. (1997). Physical and Psychophysical Measurement of Images. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1836-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1836-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7306-6

  • Online ISBN: 978-1-4612-1836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics