Skip to main content

Abstract

A deeper understanding of the perception of visual information has puzzled researchers from a wide range of scientific disciplines including physiology, neurophysiology, neuroanatomy, mathematics, psychology, physics, and computer sciences. Although human vision is quite well described at a neuroanatomical level, the information processing tasks performed by the retina and the visual cortex of the brain remain largely unclear. The computational paradigms of biological vision are simply not understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez R.C., Wintz P. Digital Image Processing. Reading: Addision-Wesley; 1977.

    MATH  Google Scholar 

  2. Pizer S.M., Zimmerman J.B., Staab E.V. Adaptive gray level assignment in CT scan display. J. Comput. Asst. Tomog. 1984; 8: 300–305.

    Google Scholar 

  3. Zimmerman J.B., Pizer S.M., Staab E.V., Perry J.R., McCartney W., Brenton B.C. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imag. 1988; MI-7; 304–312.

    Google Scholar 

  4. Zimmerman J.B., Cousins S.B., Hartzell K.M., Frisse E., Kahn M.G. A psychophysical comparison of two methods for adaptive histogram equalization. J. Digital Imag. 1989; 2: 82–91.

    Article  Google Scholar 

  5. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Imag. Proc. 1987; 39: 355–368.

    Article  Google Scholar 

  6. Jain A.K. Advances in mathematical models for image processing. Proc. IEEE 1981; 69:502–527

    Article  ADS  Google Scholar 

  7. Jain A.K. Fundamentals of Digital Image Processing. Englewood Cliffs: Prentice Hall; 1989.

    MATH  Google Scholar 

  8. Gibson J.J. The Perception of the Visual World. Boston: Houghton Mifflin; 1952.

    Google Scholar 

  9. Haralick R.M. Statistical and structural approaches to texture. Proc. IEEE 1979; 67: 786–804.

    Article  Google Scholar 

  10. Resnikoff H.L. The Illusion of Reality. New York: Springer; 1989.

    Book  MATH  Google Scholar 

  11. Julesz B. Textons, the elements of texture perception, and their interactions. Nature 1981; 290: 91–97.

    Article  ADS  Google Scholar 

  12. Julesz B. Schumer R.A. Early visual perception. Annu. Rev. Psychol. 1981; 32: 575–627.

    Article  Google Scholar 

  13. Julesz B. Frisch H.L., Gilbert E.N., Shepp L.A. Inability of humans to discriminate between visual textures that agree in second order statistics— revisted. Perception 1973; 2: 391–405.

    Article  Google Scholar 

  14. Hawkins J.K. Textural properties for pattern recognition. In: Lipkin B.S., Rosenfeld A., eds. Picture Processing and Psychopictorics. New York: Academic; 1970: 347–370.

    Google Scholar 

  15. Kruger R.P., Thompson W.B., Turner A.F. Computer diagnosis of pneumoconiosis. IEEE Trans. Syst. Man. Cyberg 1974; SMC-4: 40–49.

    Google Scholar 

  16. Sutton R.N., Hall E.L. Texture measures for automatic classification of pulmonary disease. IEEE Trans Comput. 1972; C-2: 667–676.

    Google Scholar 

  17. Mandelbrot B.B. The Fractal Geometry of Nature. New York: Freeman; 1982.

    MATH  Google Scholar 

  18. Pentland A.P. Fractal surface models for communication about terrain. Proc. SPIE 1987; 845: 301–306.

    Article  ADS  Google Scholar 

  19. Pentland A.P. Fractal based description of natural scenes. IEEE Trans. Patt. Anal. Mach. Intell. 1984; PAMI-6: 661–674.

    Google Scholar 

  20. Barnsley M.F., Deraney R.L., Mandelbrot B.B., Peitgen H.O., Saupe D., Voss R.F. The Science of Fractal Images. New York: Springer; 1988.

    Book  MATH  Google Scholar 

  21. Barnsley M. Fractals Everywhere. (second edition) New York: Academic; 1993.

    MATH  Google Scholar 

  22. Lundahl T., Ohley W.J., Kay S.M., Siffert R. Fractional Brownian motion: A maximum likelihood estimator and its application to image texture. IEEE Trans. Med. Imag. 1986; MI-5: 152–161.

    Google Scholar 

  23. Lundahl T., Ohley W.J., Kublinski W.S., Williams D.O., Gerwitz H., Most M.S. Analysis and interpretation of angiographic images by use of fractals. In: Computers in Cardiology. New York: IEEE; 1985: 355–358.

    Google Scholar 

  24. Chen C.C., Daponte J.S., Fox M.D. Fractal feature analysis and classifiction in medical imaging. IEEE Trans. Med. Imag. 1989; MI-8: 133–142.

    Google Scholar 

  25. Nelson T.R. Manchester D.K. Modeling of lung morphogenesis using fractal geometries. IEEE Trans. Med. Imag. 1988; MI-7: 321–327.

    Article  Google Scholar 

  26. Caldwell C.B., Stabelton S.J., Holdsworth D.W., Jong R.A., Weiser W.J., Cooke G. Characterization of mammographic parenchymal pattern by fractal dimension. Phys. Med. Biol. 1990; 35: 235–247.

    Article  Google Scholar 

  27. Cargill E.G., Donohoe K.J., Kolodny G., Parker A.J., Duane P. Estimation of fractal dimension of parenchymal organs based on power spectral analysis in nuclear medicine scans. In: Ortendahl D.A., Llacer J., eds. Proc. 11th Int. Conf. Inform. Proc. Med. Imag. 1991; 557–570.

    Google Scholar 

  28. Barnsley M.Fm, Demko S. Iterated function systems and the global construction of fractals. Proc. R. Soc. London A 1985; 399: 243–275.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Barnsley M.F., Ervin V., Hardin D., Lancaster J. Solution of an inverse problem for fractals and other sets. Proc. Natl. Acad. Sci. 1985; 85: 1975–1977.

    MathSciNet  Google Scholar 

  30. Attneave F. Some informational aspects of visual perception. Psychol. Rev. 1954; 61: 183–193.

    Article  Google Scholar 

  31. Marr D. Vision. New York: Freeman; 1982.

    Google Scholar 

  32. Hubel D.H., Weisel T.N. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. London 1962; 160: 106–154.

    Google Scholar 

  33. Hubel D.H., Weisel T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. London 1968; 195: 215–243.

    Google Scholar 

  34. Blake A., Zisserman A. Visual Reconstrcution. Cambridge: MIT; 1987.

    Google Scholar 

  35. Pratt W.K. Digital Image Processing (2nd ed.). New York: Wiley; 1991.

    MATH  Google Scholar 

  36. Duda R.O., Hart P.E. Pattern Classification and Scene Analyisi. New York: Wiley; 1973.

    Google Scholar 

  37. Canny J.F. Finding Edges and Lines in Images (S.M. thesis). Cambridge: MIT; 1983.

    Google Scholar 

  38. Marr D., Hildreth E. Theory of edge detection. Proc. R. Soc. London B 1980; 207: 187–217.

    Article  ADS  Google Scholar 

  39. Kirsch R. Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 1971; 4: 315–328.

    Article  Google Scholar 

  40. Rosenfeld A. A nonlinear edge detection technique. Proc. IEEE Lett. 1970; 58: 814–816.

    Google Scholar 

  41. Jain A.K., Ranganath S. Image restoration and edge extraction based on 2D stochastic models. Proc. Int. Conf. Acoust. Speech Sig. Process. (Vol. 3). Paris; 1982; 1520–1523.

    Google Scholar 

  42. Haralick R.M. Edge and region analysis for digital image data. Comput. Graph. Imag. Process. 1980; 12: 60–73.

    Article  Google Scholar 

  43. Hueckel M.G. An operator which locates edges in digitized pictures. J. Assoc. Comput. Mach. 1971; 18: 113–125.

    Article  MATH  Google Scholar 

  44. Blake A., Zisserman A. Some properties of weak continuity constraints and the GNC algorithm. Proc. IEEE Conf. Comput. vision Patt. Recogn. 1986; 656–661.

    Google Scholar 

  45. Hildreth E.C. Implementation of a Theory of Edge Detection (M.S. thesis) Cambridge: MIT; 1980.

    Google Scholar 

  46. Wilson H.R., Giese S.C. Threshold visibility of frequency gradient patterns. Vision Res. 1977; 17: 1177–1190.

    Article  Google Scholar 

  47. Wilson H.R., Bergen J.R. A four mechanism model for spatial vision. Vision Res. 1979; 19: 19–32.

    Article  Google Scholar 

  48. Harmon L.D., Julesz B. Masking in visual recognition: Effects of two-dimensional filtered noise. Science 1973; 180: 1194–1197.

    Article  ADS  Google Scholar 

  49. Terzopoulos D. Multilevel computational processes for visual surface reconstruction. Comput. Vis. Graph. Imag. Proc. 1983; 24: 52–96.

    Article  Google Scholar 

  50. Grimson W.E.L. From Images to Surfaces, Cambridge: MIT; 1981.

    Google Scholar 

  51. Brandt A. Multilevel adaptive solutions to boundary value problems. Math. Comput. 1977; 31: 333–390.

    Article  MATH  Google Scholar 

  52. Briggs W.L. A Multigrid Tutorial. Philadelphia: Society for Industrial and Applied Mathematics; 1987.

    MATH  Google Scholar 

  53. Furht B. A Survey of Multimedia Compression techniques and Standards. Part I: JPEG Standard. Real-Time Imaging 1995; 1: 49–67.

    Article  Google Scholar 

  54. Yval F., ed. Fractal Image Compression, Theory and Application. New York: Springer; 1995.

    Google Scholar 

  55. Cottrell G.W., Munro P., Zipser D. Image compression by back propagation: An example of extensional programming. In: N. Sharkey, ed. Models of Cognition: A Review of Cognitive Science. Norwood: Ablex; 1989: 208–240.

    Google Scholar 

  56. Hassoun M.H. Fundamentals of Artificial Neural Networks. Cambridge: The MIT Press; 1995.

    MATH  Google Scholar 

  57. Grossberg S. Nonlinear neural networks; principles, mechanisms, and architectures. Neural Nets 1988; 1: 17–61.

    Article  Google Scholar 

  58. Kohonen T. An introduction to neural computing. Neural Nets 1988; 1: 3–16.

    Article  Google Scholar 

  59. Carpenter G.A. Neural network models for pattern recognition and associative memory. Neural Nets 1989; 2: 243–257.

    Article  Google Scholar 

  60. Fukishima K. A neural network for visual pattern recognition. IEEE Trans. Comput. 1988; C-21: 65–75.

    Google Scholar 

  61. Fukishima K. Analysis of the process of visual pattern recognition by neocognition. Neural Nets 1989; 2: 413–420.

    Article  Google Scholar 

  62. Rumelhart D.E., McClelland J.L., PDP Research Group. Parallel Distributed Processing (Vol. 1). Cambridge: MIT; 1986.

    Google Scholar 

  63. Kohonen T. Associative Memory. A Systematic Theoretical Approach. Berlin: Springer; 1977.

    Google Scholar 

  64. Kohonen T. Self-organization and Associative Memory (2nd ed). Berlin: Springer; 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raff, U. (1997). Visual Data Formatting. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1836-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1836-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7306-6

  • Online ISBN: 978-1-4612-1836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics