Skip to main content

Problems and Prospects in the Perception of Visual Information

  • Chapter
The Perception of Visual Information
  • 306 Accesses

Abstract

The study of the perception of visual information does not have a logical hierarchical structure; rather, it consists of a number of parallel threads, more or less related to each other. In this book, these threads are dealt with separately, although the adroit reader will have noticed a degree of tangling! In this chapter, the same separations are adopted and there are some rather general conclusions about the problems and prospects in the perception of visual information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahowald M.A., Mead C. The silicon retina. Sci. Am. 1991; 254(5): 40–46.

    Google Scholar 

  2. Dizhoor A.M., Ray S., Kumar S., Nierui G., Spencer M., Brolley D., Walsh K.A., Philipov P.P., Hurley J.B., Stryer L. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 1991; 251: 915–918.

    Article  ADS  Google Scholar 

  3. Fesneko E.E., Kolesnikov S.S., Lyubarsky A.L. Induction of cyclic GMP of catatonic conductance in plasma membrane of retinal rod outer segment. Nature 1985; 313: 310–313.

    Article  ADS  Google Scholar 

  4. Lester D.H., Ingleheam C.F., Bashir R., Ackford H., Esakowitz L., Jay M., Bird A.C., Wright A.F., Papiha S.S., Battacharya S.S. Linkage to D3S47(C17) in one large dominant retinitis family and exclusion in another: confirmation of genetic heterogeneity. Am. J. Hum. Genet. 1990; 47: 536–541.

    Google Scholar 

  5. Julesz B. A brief outline of the texton theory of human vision. Trend. Neurosci. 1986; 7: 41–45.

    Article  Google Scholar 

  6. Kundel H.L., Nodine C.F., Carmody D. Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest. Radiol. 1978; 13: 175–181.

    Article  Google Scholar 

  7. Shepherd M., Findlay J.M., Hockey R.J. The relationship between eye movements and spatial attention. Quart. J. Exp. Psychol. 1986; 38A: 475–491.

    Google Scholar 

  8. Gale A.G., Murray D., Millar K., Worthington B.S. Circadian variations in radiology. In: Gale AG, Johnson F, eds. Theoretical and Applied Aspects of Eye Movement Research. Amsterdam: North Holland; 1984: 312–321.

    Google Scholar 

  9. Kosslyn S.M., Thompson, W.L., Kim I.J., Alpert, N.M. Topographical representations of mental images in the primary visual cortex. Nature 1995; 378: 496–498.

    Article  ADS  Google Scholar 

  10. Berry M.V., Wilson A.N. Black-and-white fringes and the colors of caustics. Appl. Opt. 1994; 33: 4714–4718 & 4962.

    Article  ADS  Google Scholar 

  11. Pizer S.M., Zimmerman J.B., Staab E.V. Adaptive grey level assignment in CT scan display. J. Comp. Asst. Tomog. 1984; 8: 300–305.

    Google Scholar 

  12. Haralock R.M. Statistical and structural approaches to texture. Proc. IEEE 1979; 67: 786–804.

    Article  Google Scholar 

  13. Halliwell M., Key H., Jenkins D., Jackson P.C., Wells P.N.T. New scans from old: digital reformatting of ultrasonic images. Br. J. Radiol. 1989; 62: 824–829.

    Article  Google Scholar 

  14. MacMahon H., Doi K., Sanada S., Montner S.M., Giger M.L., Metz C.E., Nakamori N., Yin F.-F., Xu X.-W., Yonekawa H., Takeuchi H. Data compression: effect on diagnostic accuracy in digital chest radiography. Radiology 1991; 178: 175–179.

    Google Scholar 

  15. Wells P.N.T. Doppler ultrasound in medical diagnosis. Br. J. Radiol. 1989; 62: 399–420.

    Article  Google Scholar 

  16. Ohara K., Doi K., Metz C.E., Giger M.L. Investigation of basic imaging properties in digital radiography: 13. Effect of simple structured noise on the detectability of simulated stenotic lesions. Med. Phys. 1989; 16: 14–21.

    Article  Google Scholar 

  17. Wagner R.F., Brown D.G. Unified SNR analysis of medical imaging systems. Phys. Med. Biol. 1985; 30: 489–518.

    Article  Google Scholar 

  18. I.C.R.U. Medical Imaging—the Assessment of Image Quality. Report 54. Bethesda: International Commission on Radiation Units; 1996.

    Google Scholar 

  19. Kundel H.L., Hendee W.R. The perception of radiologic image information. Invest. Radiol. 1985; 20: 874–877.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wells, P.N.T. (1997). Problems and Prospects in the Perception of Visual Information. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1836-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1836-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7306-6

  • Online ISBN: 978-1-4612-1836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics