Skip to main content

Virtual Reality and Augmented Reality in Medicine

  • Chapter
The Perception of Visual Information
  • 332 Accesses

Abstract

Virtual reality (VR) and associated technologies will have far-reaching effects on all aspects of our lives in the next 10 to 20 years. VR technology is well established in the aerospace industry, architecture and building design, the entertainment industry, and increasingly in medicine. While many claims might seem far-fetched, rapid technological advances in computer graphics and animation, primarily for the entertainment industry, have resulted in very realistic virtual environments. The computer power to generate these graphics is becoming widely available and, as a result, the number of potential applications for virtual reality is increasing very rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burdea G., Coiffet P. Virtual Reality Technology. New York: Wiley; 1994.

    Google Scholar 

  2. Dodgson N.A., Wiseman N.E., Lang S.R., Dunn D.C., Travis A.R.L. Autostereoscopic 3D display in laparoscopic surgery. In: Lemke H.U., Inamura K., Jaffe C.C., Vannier M.W., eds. Computer Assisted Radiology CAR’95. Berlin: Springer-Verlag; 1995: 1139–1144.

    Google Scholar 

  3. Rosen J.M., Lasko-Harvill A., Satava R. Virtual reality and surgery. In: Taylor R.H., Lavallee S., Burdea G.C., Moesges R., eds. Computer-Integrated Surgery. Cambridge: MIT Press; 1995: 231–243.

    Google Scholar 

  4. Keller P.E., Kouzes R.T., Kangas L.J., Hashem S. Transmission of olfactory information in telemedicine. Medicine Meets Virtual Reality, MMVR’95; 1995.

    Google Scholar 

  5. Weintraub D.J., Ensing M. Human Factors Issues in Head-up Display Design: the Book of HUD. University of Michigan: CSERIAC (Crew Systems Information Analysis Center); 1992.

    Google Scholar 

  6. Peuchot B., Tanguy A., Eude M. Virtual reality as an operative tool during scoliosis surgery. In: Ayache N., ed. Computer Vision, Virtual Reality and Robotics CVRMed’95. Berlin: Springer-Verlag; 1995: 549–554.

    Chapter  Google Scholar 

  7. Uenohara M., Kanade T. Vision-based object registration for real-time image overlay. In: Ayache, N., ed. Computer Vision, Virtual Reality and Robotics, CVRMed’95. Berlin: Springer-Verlag; 1995: 13–22.

    Chapter  Google Scholar 

  8. Edwards P.J., Hawkes D.J., Hill D.L.G., Jewell D., Spink R., Strong A.J., Gleeson M.J. Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. J. Imag. Guid. Surg. Vol 1, No. 3. New York: John Wiley and Sons, 1996.

    Google Scholar 

  9. Sheridan T.B. Human factors in telesurgery. In: Taylor R.H., Lavallee S., Burdea G.C., Moesges R., eds. Computer Integrated Surgery. Cambridge: MIT Press; 1995: 223–229.

    Google Scholar 

  10. Regan E.C., Price K.R. The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat. Space Envir. Med. 1994; 65: 527–530.

    Google Scholar 

  11. Tiede U., Bomans M., Hoehne K.H., Pommert A., Reimer M., Schiemann T., Schubert R., Lierse W. A computerised 3D atlas of the human skull and brain. Am. J. Neurorad. 1993; 14: 551–559.

    Google Scholar 

  12. V.M. Spitzer, D.G. Whitlock, R.F. Kilcoyne, A.L. Scherzinger, D. Rubinstein, P. Russ. The visible human male for teaching and reference in radiology. In: Lemke H.U., Inamura K., Jaffe C.C., Vannier M.W., eds. Computer Assisted Radiology, CAR’95. Berlin: Springer-Verlag; 1995: 677–683.

    Google Scholar 

  13. Wickham J.E.A. Future developments: minimally invasive surgery. Br. Med. J. 1994; 308: 193–196.

    Article  Google Scholar 

  14. Cutting C., Grayson B., Bookstein F.L., Fellingham L.L., McCarthy J.G. Computer aided planning and evaluation of facial and othognathic surgery. Comput. Plas. Surg. 1986; 13: 449–462.

    Google Scholar 

  15. Terzopoulos D., Metaxas D. Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE-PAMI 1991; 13:703–714.

    Article  Google Scholar 

  16. Water K. A physical model of facial tissue and muscle articulation derived from computer tomographic data. In: Robb, R.A., ed. Visualisation in Biomedical Computing. Washington D.C.: SPIE; 1992: 574–583.

    Google Scholar 

  17. Edwards P.J., Hill D.L.G., Little J.A., Sahni V.A.S., Hawkes D.J. Medical image registration incorporating deformations. In: Pycock D., ed. Proceedings of the British Machine Vision Conference (BMVC’95). BMVA 1995; 691–699.

    Google Scholar 

  18. Zhao J., Colchester A.C.F., Henri C.J., Hawkes D.J. Visualisation of multimodal images for neurosurgical planning and guidance. In: Ayache N., ed. Computer Vision, Virtual Reality and Robotics in Medicine. Berlin: Springer-Verlag; 1995: 40–46.

    Chapter  Google Scholar 

  19. Gandhe A.J., Hill D.L.G., Studholme C., Hawkes D.J., Ruff C.F., Strong A.J., Cox T.C.S., Gleeson MJ. Combined and 3D rendered multimodal data for planning skull base surgery: a prospective evaluation. Neurosurgery 1994; 35: 463–471.

    Article  Google Scholar 

  20. Grimson W.E.L., Ettinger G.J., White S.J., Gleason P.L., Lozano-Perez T., Wells W.M., Kikinis R. Evaluating and validating an automated registration system for enhanced reality and visualisation in surgery. In: Ayache N., ed. Computer Vision, Virtual Reality and Robotics in Medicine, CVRMed’95. Berlin: Springer-Verlag; 1995: 3–12.

    Google Scholar 

  21. Colchester A.C.F., Zhao J., Holton-Tainter K.S., Henri C J., Maitland N., Roberts P.T.E., Harris C.G., Evans R.J. Development and preliminary evaluation of VISLAN, a surgical planning and guidance system using intra-operative video imaging. Med. Imag. Anal. 1996; 1.

    Google Scholar 

  22. Wagner A., Ploder O., Enislidis G., Schumann B., Ewers R. Semiimmersive artificial environments in maxillofacial surgery. Comput. Aid. Surg. 1995; 1: 19–22.

    Google Scholar 

  23. Webb S. The Physics of Medical Imaging. Bristol: Institute of Physics; 1988.

    Google Scholar 

  24. Steinhaus H. Sur la localisation au moyen des rayons X. C. R. Acad. Scis 1938; 206: 1473–1475.

    Google Scholar 

  25. Maciunas RJ. Interactive Image Guided Neurosurgery. AANS; 1993.

    Google Scholar 

  26. Charles S. Dexterity enhancement for surgery. In: Taylor R.H., Lavallee S., Burdea G.C., Moesges R., eds. Comput. Integ. Surg. Cambridge: MIT Press; 1995: 467–471.

    Google Scholar 

  27. Weghorst S.J., Seiburg H.B., Morgan K.S. Medicine Meets Virtual Reality: Healthcare in the Information Age—Future Tools for Transforming Medicine. Proceedings of MMVR4. San Diego: IOS Press; 1996.

    Google Scholar 

  28. D’Arcy T., Ruff C.F., Hawkes D.J., Hughes S., Bhalerao A., Chiu W.C., Maxwell D., Saunders J. Volume estimation and shape characterisation of fetal organs. 5th Int. Conf. Fetal Neonatal Phys. Meas. 1995; Abstract.

    Google Scholar 

  29. Bajura M., Fuchs H., Ohbuchi R. Merging virtual objects with the real world: seeing ultrasound imagery within the patient. In: Taylor R.H., Lavallee S., Burdea G.C., Moesges R., eds. Computer Integrated Surgery. Cambridge: MIT Press; 1995: 245–254.

    Google Scholar 

  30. Herman G.T., Liu H.K. Three-dimensional display of human organs from computed tomograms. Comput. Graph. Imag. Proc. 1979; 9: 1–21.

    Article  ADS  Google Scholar 

  31. Bezdek J.C., Hall L.O., Clarke L.P. Review of MR segmentation techniques using pattern recognition. Med. Phys. 1993; 20: 1033–1048.

    Article  Google Scholar 

  32. Griffin L.D., Robinson G.P., Colchester A.C.F. Multi-scale hierarchial segmentation. In: Illingworth J., ed. British Machine Vision Conference, BMVC’93. Sheffield: BMVA Press; 1993: 289–298.

    Google Scholar 

  33. Hill D.L.G., Hawkes D.J., Gleeson M.J., Cox T.C.S., Strong A.J., Wong W.L, Ruff C.F., Kitchen N.D., Thomas D.G.T., Sofat S., Crossman J.E., Studholme C., Gandhe A.J., Green S.E.M., Robinson G.P. Accurate frameless registration of MR and CT images of the head: applications in planning surgery and radiation therapy. Radiology 1994; 191: 447–454.

    Google Scholar 

  34. Pelizzari C.A., Chen G.T.Y., Speibring D.R., Weichselbaum R.R., Chen C. Accurate three dimensional registration of CT, PET and/or MR images of the brain. J. Comput. Asst. Tomog. 1989; 13: 20–26.

    Article  Google Scholar 

  35. Jiang H., Robb R.A., Holton K.S. New approach to 3-D registration of multimodality medical images by surface matching. SPIE 1992; 1808: 196–213.

    Article  ADS  Google Scholar 

  36. Collignon A., Maes F., Delaere D., Vandermeulen D., Suetens P., Marchal G. Automated multimodality image registration using information theory. In: Bizais Y., Barillot C., Di Paola R., eds. Information processing in medical imaging. Dordrecht: Kluwer; 1995: 263–274.

    Google Scholar 

  37. Wells W.M., Viola P., Kikinis R. Multimodal volume registration by maximisation of mutual information. In: Taylor R.H., Lavallee S., eds. Medical Robotics and Computer Assisted Surgery MRCAS’95 1995; 55–62.

    Google Scholar 

  38. Studholme C., Hill D.L.G., Hawkes D.J. Multiresolution voxel similarity measures for MR-PET registration. In: Bizais Y., Barillot C., Di Paola R., eds. Information Processing in Medical Imaging (IPMI’95). Dordrecht: Kluwer; 1995: 287–298.

    Google Scholar 

  39. Studholme C., Hill D.L.G., Hawkes D.J. Automated 3D registration of truncated MR and CT images of the head. In: Pycock D., ed. Proceedings of the British Machine Vision Conference (BMVC’95). BMVA 1995; 27–36

    Google Scholar 

  40. Hoehne K.H., Bomans M., Pommert A., Riemer M., Tiede U., Wiebecke G. Rendering tomographic volume data: adequacy of methods for different modalities and organs. In: Hoehne K.H., Fuchs H., Pizer S.M., eds. 3D Imaging in Medicine. Berlin: Springer-Verlag; 1990: 197–216.

    Chapter  Google Scholar 

  41. Lorensen W.E., Cline H.E. Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 1987; 21: 163–169.

    Article  Google Scholar 

  42. Hoehne K.H., Bernstein R. Shading 3D images from CT using grey level gradients. IEEE-MI 1986; 1: 45–47.

    Article  Google Scholar 

  43. Levoy M. Methods for improving the efficiency and versatility of volume rendering. In: Ortendahl D.A., Llacer J.,eds. Information Processing in Medical Imaging. New York: Wiley-Liss; 1990: 473–488.

    Google Scholar 

  44. Ruff C.F., Hill D.L.G., Robinson G.P., Hawkes D.J. Volume rendering of multimodal images for the planning of skull base surgery. In: Lemke J.U., Inamura K., Jaffe C.C., Felix R., eds. Computer Assisted Radiology, CAR’93. Berlin: Springer-Verlag; 1993: 574–582.

    Google Scholar 

  45. Maciunas R.J., Fitzpatrick J.M., Galloway R.L., Allen G.S. Beyond stereotaxy: extreme levels of application accuracy are provided by implantable fiducial markers for interactive image-guided neurosurgery. In: Maciunas R.J., ed. Interactive Image Guided Neurosurgery. AANS 1993: 259–270.

    Google Scholar 

  46. Galloway R.L., Maciunas R.J., Edwards C.A. Interactive image guided neurosurgery. IEEE-BME 1992; 39: 1226–1231.

    Article  Google Scholar 

  47. Watanabe E., Mayanagi Y., Kosugi Y., Manaka S., Takakura K. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 1991; 28: 792–800.

    Article  Google Scholar 

  48. Reinhardt H.F., Zweifel H.-J. Interactive sonar-operated device for stereotactic and open surgery. Stereotact. Funct. Neurosurg. 1990; 54-55: 393–397.

    Article  Google Scholar 

  49. Friets E.M., Strohbehn J.W., Hatch J.F., Roberts D.W. A frameless stereotaxic operating microscope for neurosurgery. IEEE-BME 1989; 36: 608–617.

    Article  Google Scholar 

  50. Bucholtz R.D., Smith K.R. A comparison of sonic digitisers versus light emitting diode based localisation. In: Maciunas R. J., ed. Interactive Image Guided Neurosurgery. AANS; 1993: 179–200.

    Google Scholar 

  51. Colchester A.C.F., Zhao I, Henri C., Evans R.J., Roberts P., Maitland N., Hawkes D.J., Hill D.L.G., Strong A.J., Thomas D.G.T., Gleeson M.J., Cox, T.C.S. Craniotomy simulation and guidance using a stereo video based tracking system (VISLAN). In: Robb R.A., ed. Visualization in Biomedical Computing SPIE 1994; 2359: 541–551.

    Google Scholar 

  52. Borgefors G. Hierarchial chamfer matching: a parametric edge matching algorithm. IEEE-MI 1988; 10: 849.

    Google Scholar 

  53. Henri C.J., Colchester A.C.F., Zhao J., Hawkes D.J., Hill D.L.G., Evans R.L. Registration of 3-D surface data for intra-operative guidance and visualisation in frameless stereotactic neurosurgery. In: Ayache N., ed. Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed’ 95). Berlin: Springer-Verlag; 1995: 47–69.

    Chapter  Google Scholar 

  54. Hamadeh A., Lavallee S., Szeliski R., Cinquin P., Peria O. Anatomy based registration for computer integrated surgery. In: Ayache N., ed. Computer Vision, Virtual Reality and Robotics in Medicine, CVRMed’95. Berlin: Springer; 1995: 212–218.

    Chapter  Google Scholar 

  55. Padgham C.A., Saunders J.E. The Perception of Light and Colour. London: Bell; 1975.

    Google Scholar 

  56. Domenech B., Segui M., Capilla P., Illueca C. Variation of the visual acuity-luminance function with background colour. Ophthal. Physiol. Opt. 1994; 14: 302–305.

    Article  Google Scholar 

  57. Klinker G.J. A Physical Approach to Colour Image Understanding. Massachusetts: Peters; 1993.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hawkes, D. (1997). Virtual Reality and Augmented Reality in Medicine. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1836-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1836-4_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7306-6

  • Online ISBN: 978-1-4612-1836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics