Skip to main content

Hypothalamic Fetal Programming of Energy Homeostasis

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1316 Accesses

Abstract

Prenatal nutritional conditions exert fetal programming effects on offspring predisposing them to altered energy homeostasis later in life. Human epidemiological studies show that prenatal undernutrition or overnutrition increases the risk for developing obesity and type 2 diabetes mellitus in adulthood and, as such, bolster the Developmental Origins of Health and Diseases (DOHaD) hypothesis. Many animal models have confirmed that suboptimal maternal nutritional conditions are associated with altered birthweight and abnormal postnatal metabolic status. The mechanisms behind fetal programming, however, are poorly understood. The hypothalamus is critical in long-term regulation of body weight and energy homeostasis and has been proposed as a target site of fetal programming. This chapter presents evidence that changes in hypothalamic gene expression and neuronal connections underlie fetal programming observed after exposure to abnormal prenatal nutritional conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. Aug 4 1990;301(6746):259–62.

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. Jan 1993;36(1):62–7.

    Article  PubMed  CAS  Google Scholar 

  3. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. Mar 4 1989;298(6673):564–7.

    Article  PubMed  CAS  Google Scholar 

  4. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. Sep 9 1989;2(8663):577–80.

    Article  PubMed  CAS  Google Scholar 

  5. Newnham JP, Ross MG. Early life origins of human health and disease. Basel: Karger; 2009.

    Google Scholar 

  6. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. Feb 13 1999;318(7181):427–31.

    Article  PubMed  CAS  Google Scholar 

  7. Rich-Edwards JW, Stampfer MJ, Manson JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. Aug 16 1997;315(7105):396–400.

    Article  PubMed  CAS  Google Scholar 

  8. Ravelli AC, van der Meulen JH, Michels RP, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. Jan 17 1998;351(9097):173–7.

    Article  PubMed  CAS  Google Scholar 

  9. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. Aug 12 1976;295(7):349–53.

    Article  PubMed  CAS  Google Scholar 

  10. Stanner SA, Bulmer K, Andres C, et al. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ. Nov 22 1997;315(7119):1342–8.

    Article  PubMed  CAS  Google Scholar 

  11. Irving RJ, Belton NR, Elton RA, Walker BR. Adult cardiovascular risk factors in premature babies. Lancet. Jun 17 2000;355(9221):2135–6.

    Article  PubMed  CAS  Google Scholar 

  12. Hofman PL, Regan F, Jackson WE, et al. Premature birth and later insulin resistance. N Engl J Med. Nov 18 2004;351(21):2179–86.

    Article  PubMed  CAS  Google Scholar 

  13. Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med. May 17 2007;356(20):2053–63.

    Article  PubMed  CAS  Google Scholar 

  14. Kaijser M, Bonamy AK, Akre O, et al. Perinatal risk factors for diabetes in later life. Diabetes. Mar 2009;58(3):523–6.

    Article  PubMed  CAS  Google Scholar 

  15. Rotteveel J, van Weissenbruch MM, Twisk JW. Delemarre-Van de Waal HA. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. Aug 2008;122(2):313–21.

    Article  PubMed  Google Scholar 

  16. Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (Lond). Dec 2008;32 Suppl 7:S62–S71.

    Article  CAS  Google Scholar 

  17. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. Jul 3 2008;359(1):61–73.

    Article  PubMed  CAS  Google Scholar 

  18. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. Apr 2005;85(2):571–633.

    Article  PubMed  CAS  Google Scholar 

  19. Maffeis C, Micciolo R, Must A, Zaffanello M, Pinelli L. Parental and perinatal factors associated with childhood obesity in north-east Italy. Int J Obes Relat Metab Disord. May 1994;18(5):301–5.

    PubMed  CAS  Google Scholar 

  20. Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ. Dec 8 2001;323(7325):1331–5.

    Article  PubMed  CAS  Google Scholar 

  21. Rugholm S, Baker JL, Olsen LW, Schack-Nielsen L, Bua J, Sorensen TI. Stability of the association between birth weight and childhood overweight during the development of the obesity epidemic. Obes Res. Dec 2005;13(12):2187–94.

    Article  PubMed  Google Scholar 

  22. Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles MA, Pettitt DJ. Childhood obesity and metabolic imprinting: the ongoing effects of maternal hyperglycemia. Diabetes Care. Sep 2007;30(9):2287–92.

    Article  PubMed  Google Scholar 

  23. Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med. Feb 3 1983;308(5):242–5.

    Article  PubMed  CAS  Google Scholar 

  24. Jones AP, Simson EL, Friedman MI. Gestational undernutrition and the development of obesity in rats. J Nutr. Aug 1984;114(8):1484–92.

    PubMed  CAS  Google Scholar 

  25. Garofano A, Czernichow P, Breant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. Sep 1998;41(9):1114–20.

    Article  PubMed  CAS  Google Scholar 

  26. Shahkhalili Y, Moulin J, Zbinden I, Aprikian O, Mace K. Comparison of two models of intrauterine growth restriction for early catch-up growth and later development of glucose intolerance and obesity in rats. Am J Physiol Regul Integr Comp Physiol. Jan 2010;298(1):R141–6.

    Article  PubMed  CAS  Google Scholar 

  27. Jimenez-Chillaron JC, Hernandez-Valencia M, Reamer C, et al. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes. Mar 2005;54(3):702–11.

    Article  PubMed  CAS  Google Scholar 

  28. Jimenez-Chillaron JC, Hernandez-Valencia M, Lightner A, et al. Reductions in caloric intake and early postnatal growth prevent glucose intolerance and obesity associated with low birthweight. Diabetologia. Aug 2006;49(8):1974–84.

    Article  PubMed  CAS  Google Scholar 

  29. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes. Dec 1991;40 Suppl 2:115–20.

    PubMed  CAS  Google Scholar 

  30. Petrik J, Reusens B, Arany E, et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology. Oct 1999;140(10):4861–73.

    Article  PubMed  CAS  Google Scholar 

  31. Bertin E, Gangnerau MN, Bellon G, Bailbe D. Arbelot De Vacqueur A, Portha B. Development of beta-cell mass in fetuses of rats deprived of protein and/or energy in last trimester of pregnancy. Am J Physiol Regul Integr Comp Physiol. Sep 2002;283(3):R623–R30.

    PubMed  CAS  Google Scholar 

  32. Cripps RL, Martin-Gronert MS, Archer ZA, Hales CN, Mercer JG, Ozanne SE. Programming of hypothalamic neuropeptide gene expression in rats by maternal dietary protein content during pregnancy and lactation. Clin Sci (Lond). Jul 2009;117(2):85–93.

    Article  CAS  Google Scholar 

  33. Ozanne SE, Lewis R, Jennings BJ, Hales CN. Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet. Clin Sci (Lond). Feb 2004;106(2):141–5.

    Article  CAS  Google Scholar 

  34. Bieswal F, Ahn MT, Reusens B, et al. The importance of catch-up growth after early malnutrition for the programming of obesity in male rat. Obesity (Silver Spring). Aug 2006;14(8):1330–43.

    Article  CAS  Google Scholar 

  35. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. Dec 15 2005;86(5):661–8.

    Article  PubMed  CAS  Google Scholar 

  36. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF. Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci. Nov 12 2008;28(46):12107–19.

    Article  PubMed  CAS  Google Scholar 

  37. Chen H, Morris MJ. Differential responses of orexigenic neuropeptides to fasting in offspring of obese mothers. Obesity (Silver Spring). Jul 2009;17(7):1356–62.

    CAS  Google Scholar 

  38. Gupta A, Srinivasan M, Thamadilok S, Patel MS. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. Mar 2009;200(3):293–300.

    Article  PubMed  CAS  Google Scholar 

  39. Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. Feb 15 2009;587(Pt 4):905–15.

    Article  PubMed  CAS  Google Scholar 

  40. Morris MJ, Chen H. Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes (Lond). Jan 2009;33(1):115–22.

    Article  CAS  Google Scholar 

  41. Page KC, Malik RE, Ripple JA, Anday EK. Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol Regul Integr Comp Physiol. Oct 2009;297(4):R1049–R57.

    Article  PubMed  CAS  Google Scholar 

  42. Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJ, Badger TM. Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol. Feb 2008;294(2):R528–R38.

    Article  PubMed  CAS  Google Scholar 

  43. Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab. Oct 2006;291(4):E792–9.

    Article  PubMed  CAS  Google Scholar 

  44. Srinivasan M, Aalinkeel R, Song F, et al. Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype. Am J Physiol Endocrinol Metab. Jan 2006;290(1):E129–E34.

    Article  PubMed  CAS  Google Scholar 

  45. Oh W, Gelardi NL, Cha CJ. Maternal hyperglycemia in pregnant rats: its effect on growth and carbohydrate metabolism in the offspring. Metabolism. Dec 1988;37(12):1146–51.

    Article  PubMed  CAS  Google Scholar 

  46. Oh W, Gelardi NL, Cha CJ. The cross-generation effect of neonatal macrosomia in rat pups of streptozotocin-induced diabetes. Pediatr Res. Jun 1991;29(6):606–10.

    Article  PubMed  CAS  Google Scholar 

  47. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. Dec 5 2005;493(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  48. Schwartz MW, Woods SC, Porte D Jr., Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. Apr 6 2000;404(6778):661–71.

    PubMed  CAS  Google Scholar 

  49. Mayer CM, Belsham DD. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons. Mol Cell Endocrinol. Aug 13 2009;307(1–2):99–108.

    Article  PubMed  CAS  Google Scholar 

  50. Williams KW, Margatho LO, Lee CE, et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci. Feb 17 2010;30(7):2472–9.

    Article  PubMed  CAS  Google Scholar 

  51. Markakis EA. Development of the neuroendocrine hypothalamus. Front Neuroendocrinol. Jul 2002;23(3):257–91.

    Article  PubMed  CAS  Google Scholar 

  52. Woodhams PL, Allen YS, McGovern J, et al. Immunohistochemical analysis of the early ontogeny of the neuropeptide Y system in rat brain. Neuroscience. May 1985;15(1):173–202.

    Article  PubMed  CAS  Google Scholar 

  53. Grove KL, Allen S, Grayson BE, Smith MS. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience. 2003;116(2):393–406.

    Article  PubMed  CAS  Google Scholar 

  54. Singer LK, Kuper J, Brogan RS, Smith MS, Grove KL. Novel expression of hypothalamic neuropeptide Y during postnatal development in the rat. Neuroreport. Apr 7 2000;11(5):1075–80.

    Article  PubMed  CAS  Google Scholar 

  55. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. Oct 2005;310(5748):683–5.

    Article  PubMed  CAS  Google Scholar 

  56. Nilsson I, Johansen JE, Schalling M, Hokfelt T, Fetissov SO. Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. Brain Res Dev Brain Res. Mar 31 2005;155(2):147–54.

    Article  PubMed  CAS  Google Scholar 

  57. Elkabes S, Loh YP, Nieburgs A, Wray S. Prenatal ontogenesis of pro-opiomelanocortin in the mouse central nervous system and pituitary gland: an in situ hybridization and immunocytochemical study. Brain Res Dev Brain Res. Mar 1 1989;46(1):85–95.

    Article  PubMed  CAS  Google Scholar 

  58. Khachaturian H, Alessi NE, Munfakh N, Watson SJ. Ontogeny of opioid and related peptides in the rat CNS and pituitary: an immunocytochemical study. Life Sci. 1983;33 Suppl 1:61–4.

    Article  PubMed  CAS  Google Scholar 

  59. Ahima RS, Hileman SM. Postnatal regulation of hypothalamic neuropeptide expression by leptin: implications for energy balance and body weight regulation. Regul Pept. Aug 25 2000;92(1–3):1–7.

    Article  PubMed  CAS  Google Scholar 

  60. Grayson BE, Kievit P, Smith MS, Grove KL. Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations. Front Neuroendocrinol. Jan 2010;31(1):16–31.

    Article  PubMed  CAS  Google Scholar 

  61. Grove KL, Smith MS. Ontogeny of the hypothalamic neuropeptide Y system. Physiol Behav. Jun 2003;79(1):47–63.

    Article  PubMed  CAS  Google Scholar 

  62. Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. Mar 17 2004;24(11):2797–805.

    Article  PubMed  CAS  Google Scholar 

  63. Mauri A, Melis MR, Deiana P, Loviselli A, Volpe A, Argiolas A. Melanocortins and opioids modulate early postnatal growth in rats. Regul Pept. Sep 22 1995;59(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  64. Glavas MM, Joachim SE, Draper SJ, Smith MS, Grove KL. Melanocortinergic activation by melanotan II inhibits feeding and increases uncoupling protein 1 messenger ribonucleic acid in the developing rat. Endocrinology. Jul 2007;148(7):3279–87.

    Article  PubMed  CAS  Google Scholar 

  65. Carlo AS, Meyerhof W, Williams LM. Early developmental expression of leptin receptor gene and [125I]leptin binding in the rat forebrain. J Chem Neuroanat. May 2007;33(3):155–63.

    Article  PubMed  CAS  Google Scholar 

  66. Carlo AS, Pyrski M, Loudes C, et al. Leptin sensitivity in the developing rat hypothalamus. Endocrinology. Dec 2007;148(12):6073–82.

    Article  PubMed  CAS  Google Scholar 

  67. Cottrell EC, Cripps RL, Duncan JS, et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am J Physiol Regul Integr Comp Physiol. Mar 2009;296(3):R631–9.

    Article  PubMed  CAS  Google Scholar 

  68. Morash BA, Imran A, Wilkinson D, Ur E, Wilkinson M. Leptin receptors are developmentally regulated in rat pituitary and hypothalamus. Mol Cell Endocrinol. Nov 28 2003;210(1–2):1–8.

    Article  PubMed  CAS  Google Scholar 

  69. Pan W, Hsuchou H, Tu H, Kastin AJ. Developmental changes of leptin receptors in cerebral microvessels: unexpected relation to leptin transport. Endocrinology. Mar 2008;149(3):877–85.

    Article  PubMed  CAS  Google Scholar 

  70. Proulx K, Richard D, Walker CD. Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake. Endocrinology. Dec 2002;143(12):4683–92.

    Article  PubMed  CAS  Google Scholar 

  71. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. Apr 2 2004;304(5667):108–10.

    Article  PubMed  CAS  Google Scholar 

  72. Delahaye F, Breton C, Risold PY, et al. Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology. Feb 2008;149(2):470–5.

    Article  PubMed  CAS  Google Scholar 

  73. Devaskar SU, Ollesch C, Rajakumar RA, Rajakumar PA. Developmental changes in ob gene expression and circulating leptin peptide concentrations. Biochem Biophys Res Commun. Sep 8 1997;238(1):44–7.

    Article  PubMed  CAS  Google Scholar 

  74. Smith JT, Waddell BJ. Developmental changes in plasma leptin and hypothalamic leptin receptor expression in the rat: peripubertal changes and the emergence of sex differences. J Endocrinol. Mar 2003;176(3):313–9.

    Article  PubMed  CAS  Google Scholar 

  75. Yura S, Itoh H, Sagawa N, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. Jun 2005;1(6):371–8.

    Article  PubMed  CAS  Google Scholar 

  76. Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. Oct 2005;146(10):4211–6.

    Article  PubMed  CAS  Google Scholar 

  77. Attig L, Solomon G, Ferezou J, et al. Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int J Obes (Lond). Jul 2008;32(7):1153–60.

    Article  CAS  Google Scholar 

  78. Vickers MH, Gluckman PD, Coveny AH, et al. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology. Apr 2008;149(4):1906–13.

    Article  PubMed  CAS  Google Scholar 

  79. Smith JT, Waddell BJ. Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology. Jul 2003;144(7):3024–30.

    Article  PubMed  CAS  Google Scholar 

  80. Stocker CJ, Wargent E, O’Dowd J, et al. Prevention of diet-induced obesity and impaired glucose tolerance in rats following administration of leptin to their mothers. Am J Physiol Regul Integr Comp Physiol. May 2007;292(5):R1810–8.

    Article  PubMed  CAS  Google Scholar 

  81. Bado A, Levasseur S, Attoub S, et al. The stomach is a source of leptin. Nature. Aug 20 1998;394(6695):790–3.

    Article  PubMed  CAS  Google Scholar 

  82. Sanchez J, Priego T, Palou M, Tobaruela A, Palou A, Pico C. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology. Feb 2008;149(2):733–40.

    Article  PubMed  CAS  Google Scholar 

  83. Plagemann A, Waas T, Harder T, Rittel F, Ziska T, Rohde W. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides. Feb 2000;34(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  84. Terroni PL, Anthony FW, Hanson MA, Cagampang FR. Expression of agouti-related peptide, neuropeptide Y, pro-opiomelanocortin and the leptin receptor isoforms in fetal mouse brain from pregnant dams on a protein-restricted diet. Brain Res Mol Brain Res. Oct 31 2005;140(1–2):111–5.

    Article  PubMed  CAS  Google Scholar 

  85. Desai M, Gayle D, Han G, Ross MG. Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. May 2007;14(4):329–37.

    Article  PubMed  Google Scholar 

  86. Yousheng J, Nguyen T, Desai M, Ross MG. Programmed alterations in hypothalamic neuronal orexigenic responses to ghrelin following gestational nutrient restriction. Reprod Sci. Sep 2008;15(7):702–9.

    Article  Google Scholar 

  87. Breton C, Lukaszewski MA, Risold PY, et al. Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring. Am J Physiol Endocrinol Metab. Mar 2009;296(3):E462–E72.

    Article  PubMed  CAS  Google Scholar 

  88. Isganaitis E, Jimenez-Chillaron J, Woo M, et al. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes. May 2009;58(5):1192–200.

    Article  PubMed  CAS  Google Scholar 

  89. Coupe B, Amarger V, Grit I, Benani A, Parnet P. Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology. Feb 2010;151(2):702–13.

    Article  PubMed  CAS  Google Scholar 

  90. Coupe B, Grit I, Darmaun D, Parnet P. The timing of “catch-up growth” affects metabolism and appetite regulation in male rats born with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. Sep 2009;297(3):R813–R24.

    Article  PubMed  CAS  Google Scholar 

  91. Plagemann A, Harder T, Brunn M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. Oct 15 2009;587(Pt 20):4963–76.

    Article  PubMed  CAS  Google Scholar 

  92. Coupe B, Dutriez-Casteloot I, Breton C, et al. Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat. J Neuroendocrinol. Jan 2009;21(1):40–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement C. Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheung, C.C., Ingraham, H.A. (2011). Hypothalamic Fetal Programming of Energy Homeostasis. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics