Skip to main content

Prenatal Stress, Glucocorticoids, and the Metabolic Syndrome

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1334 Accesses

Abstract

Compelling epidemiological evidence linking exposure to an adverse intrauterine environment with a markedly elevated risk of cardiometabolic disorders in adulthood has led to the concept of “developmental programming”. One major hypothesis for early life physiological programming implicates fetal overexposure to glucocorticoids. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress, exogenous administration, or dysfunction of the placental enzyme 11β-hydroxysteroid dehydrogenase type 2 (the placental glucocorticoid “barrier”) reduces birthweight and is associated with programming effects in the offspring. Prenatal glucocorticoid overexposure is associated with persistent elevations in blood pressure, potentially secondary to effects on nephron number, renal glucocorticoid sensitivity, the renin–angiotensin system, and vascular responsiveness. Additionally, offspring exposed to excess glucocorticoid in utero have altered glucose and insulin homeostasis in adulthood, with insulin resistance and hyperglycemia, which may result from programming effects on specific genes in liver and pancreas. The long-term effects of prenatal glucocorticoid overexposure in humans have been poorly investigated thus far, although some studies have shown prenatal glucocorticoid administration to be associated with increased blood pressure, altered renal function, and insulin resistance in early adulthood. In this chapter we review the evidence for early life glucocorticoid effects on the programming of cardiometabolic risk and discuss the potential mechanisms, including alterations in organ size or cell number, changes in gene expression, altered target organ responsiveness, and epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ravelli AC, van der Meulen JH, Michels RP, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.

    PubMed  CAS  Google Scholar 

  2. Barker DJP. In utero programming of chronic disease. Clin Sci. 1998;95:115–28.

    PubMed  CAS  Google Scholar 

  3. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.

    PubMed  CAS  Google Scholar 

  4. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br Med J. 1989;298(6673):564–7.

    CAS  Google Scholar 

  5. Levitt NS, Lambert EV, Woods D, Hales CN, Andrew R, Seckl JR. Impaired glucose tolerance and elevated blood pressure in low birth weight, nonobese, young South African adults: early programming of cortisol axis. J Clin Endocrinol Metab. 2000;85(12):4611–8.

    PubMed  CAS  Google Scholar 

  6. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–41.

    PubMed  CAS  Google Scholar 

  7. Yajnik CS, Fall CH, Vaidya U, et al. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diab Med. 1995;12(4):330–6.

    CAS  Google Scholar 

  8. Edwards CR, Benediktsson R, Lindsay RS, Seckl JR. Dysfunction of placental glucocorticoid barrier: a link between the fetal environment and adult hypertension? Lancet. 1993;341(8841):355–7.

    PubMed  CAS  Google Scholar 

  9. Seckl JR. Physiologic programming of the fetus. Clin Perinatol. 1998;25(4):939–62.

    PubMed  CAS  Google Scholar 

  10. Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol. 2004;180:1–16.

    PubMed  CAS  Google Scholar 

  11. Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol. 2005;288(1):R34–8.

    CAS  Google Scholar 

  12. Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601.

    PubMed  CAS  Google Scholar 

  13. Arai Y, Gorski RA. Critical exposure time for androgenization of the developing hypothalamus in the female rat. Endocrinology. 1968;82(5):1010–4.

    PubMed  CAS  Google Scholar 

  14. Gustafsson JA, Mode A, Norstedt G, Skett P. Sex steroid induced changes in hepatic enzymes. Ann Rev Physiol. 1983;45:51–60.

    CAS  Google Scholar 

  15. Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet. 1985;19(1):209–52.

    PubMed  CAS  Google Scholar 

  16. Sheppard KE. Corticosteroid receptors, 11 beta hydroxysteroid dehydrogenase and the heart. Vitam Horm. 2003;66:77–112.

    PubMed  CAS  Google Scholar 

  17. Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci USA. 2005;102(52):19204–7.

    PubMed  CAS  Google Scholar 

  18. Howlett TA, Rees LH, Besser GM. Cushing’s syndrome. Clin Endocrinol Metab. 1985;14:911–45.

    PubMed  CAS  Google Scholar 

  19. Cole TJ, Blendy JA, Monaghan AP, Schmid W, Aguzzi A, Schutz G. Molecular genetic analysis of glucocorticoid signalling during mouse development. Steroids. 1995;60(1):93–6.

    PubMed  CAS  Google Scholar 

  20. Speirs HJ, Seckl JR, Brown RW. Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol. 2004;181(1):105–16.

    PubMed  CAS  Google Scholar 

  21. Brown RW, Diaz R, Robson AC, et al. The ontogeny of 11 beta-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology. 1996;137(2):794–7.

    PubMed  CAS  Google Scholar 

  22. Sun K, Yang K, Challis JR. Differential expression of 11 beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J Clin Endocrinol Metab. 1997;82(1):300–5.

    PubMed  CAS  Google Scholar 

  23. Condon J, Gosden C, Gardener D, et al. Expression of type 2 11beta-hydroxysteroid dehydrogenase and corticosteroid hormone receptors in early human fetal life. J Clin Endocrinol Metab. 1998;83(12):4490–7.

    PubMed  CAS  Google Scholar 

  24. Costa A, Rocci MP, Arisio R, et al. Glucocorticoid receptors immunoreactivity in tissue of human embryos. J Endocr Invest. 1996;19:92–8.

    PubMed  CAS  Google Scholar 

  25. Bian X, Seidler FJ, Slotkin TA. Fetal dexamethasone exposure interferes with establishment of cardiac noradrenergic innervation and sympathetic activity. Teratology. 1993;47(2):109–17.

    PubMed  CAS  Google Scholar 

  26. Bian XP, Seidler FJ, Slotkin TA. Promotional role for glucocorticoids in the development of intracellular signalling: enhanced cardiac and renal adenylate cyclase reactivity to beta-adrenergic and non-adrenergic stimuli after low-dose fetal dexamethasone exposure. J Dev Physiol. 1992;17(6):289–97.

    PubMed  CAS  Google Scholar 

  27. Celsi G, Kistner A, Eklof AC, Ceccatelli S, Aizman R, Jacobson SH. Inhibition of renal growth by prenatal dexamethsaone and the programming of blood pressure in the offspring. J Am Soc Nephrol. 1997;8:A1360–A1360.

    Google Scholar 

  28. Ballard PL. Glucocorticoids and differentiation. In: Rousseau GG, editor. Glucocorticoid hormone action (Monographs in endocrinology). Berlin: Springer; 1979. pp. 493–7.

    Google Scholar 

  29. Fowden AL. Endocrine regulation of fetal growth. Reprod Fertil Dev. 1995;7:351–63.

    PubMed  CAS  Google Scholar 

  30. Ward RM. Pharmacologic enhancement of fetal lung maturation. Clin Perinatol. 1994;21(3):523–42.

    PubMed  CAS  Google Scholar 

  31. Reinisch JM, Simon NG, Karow WG, Gandelman R. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science. 1978;202(4366):436–8.

    PubMed  CAS  Google Scholar 

  32. Ikegami M, Jobe AH, Newnham J, Polk DH, Willet KE, Sly P. Repetitive prenatal glucocorticoids improve lung function and decrease growth in preterm lambs. Am J Respir Crit Care Med. 1997;156(1):178–84.

    PubMed  CAS  Google Scholar 

  33. Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest. 1998;101(10):2174–81.

    PubMed  CAS  Google Scholar 

  34. Newnham JP, Evans SF, Godfrey M, Huang W, Ikegami M, Jobe A. Maternal but not fetal, administration of corticosteroids restricts fetal growth. J Matern Fetal Med. 1999;8(3):81–7.

    PubMed  CAS  Google Scholar 

  35. French NP, Hagan R, Evans SF, Godfrey M, Newnham JP. Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol. 1999;180(1 Pt 1):114–21.

    PubMed  CAS  Google Scholar 

  36. Bloom SL, Sheffield JS, McIntire DD, Leveno KJ. Antenatal dexamethasone and decreased birth weight. Obstet Gynecol. 2001;97(4):485–90.

    PubMed  CAS  Google Scholar 

  37. Goland RS, Jozak S, Warren WB, Conwell IM, Stark RI, Tropper PJ. Elevated levels of umbilical cord plasma corticotropin-releasing hormone in growth-retarded fetuses. J Clin Endocrinol Metab. 1993;77(5):1174–9.

    PubMed  CAS  Google Scholar 

  38. Goland RS, Tropper PJ, Warren WB, Stark RI, Jozak SM, Conwell IM. Concentrations of corticotrophin-releasing hormone in the umbilical-cord blood of pregnancies complicated by pre-eclampsia. Reprod Fertil Dev. 1995;7(5):1227–30.

    PubMed  CAS  Google Scholar 

  39. McCabe L, Marash D, Li A, Matthews SG. Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotropin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J Neuroendocrinol. 2001;13(5):425–31.

    PubMed  CAS  Google Scholar 

  40. Rashid S, Lewis GF. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin Biochem. 2005;38:401–9.

    PubMed  CAS  Google Scholar 

  41. Campbell AL, Murphy BE. The maternal-fetal cortisol gradient during pregnancy and at delivery. J Clin Endocrinol Metab. 1977;45:435–40.

    PubMed  CAS  Google Scholar 

  42. Seckl JR. Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids. 1997;62(1):89–94.

    PubMed  CAS  Google Scholar 

  43. Brown RW, Chapman KE, Kotelevtsev Y, et al. Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2. Biochem J. 1996;313(Pt 3):1007–17.

    PubMed  CAS  Google Scholar 

  44. Waddell BJ, Atkinson HC. Production rate, metabolic clearance rate and uterine extraction of corticosterone during rat pregnancy. J Endocrinol. 1994;143(1):183–90.

    PubMed  CAS  Google Scholar 

  45. Waddell BJ, Benediktsson R, Brown RW, Seckl JR. Tissue-specific messenger ribonucleic acid expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 and the glucocorticoid receptor within rat placenta suggests exquisite local control of glucocorticoid action. Endocrinology. 1998;139(4):1517–23.

    PubMed  CAS  Google Scholar 

  46. Lopez Bernal A, Craft IL. Corticosteroid metabolism in vitro by human placenta, fetal membranes and decidua in early and late gestation. Placenta. 1981;2(4):279–85.

    PubMed  CAS  Google Scholar 

  47. Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol. 1997;46(2):161–6.

    CAS  Google Scholar 

  48. Bernal AL, Flint AP, Anderson AB, Turnbull AC. 11 beta-hydroxysteroid dehydrogenase activity in human placenta and decidua. J Steroid Biochem. 1980;13(9):1081–7.

    PubMed  CAS  Google Scholar 

  49. Venihaki M, Carrigan A, Dikkes P, Majzoub JA. Circadian rise in maternal glucocorticoid prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc Natl Acad Sci USA. 2000;97(13):7336–41.

    PubMed  CAS  Google Scholar 

  50. Sampath-Kumar R, Matthews SG, Yang K. 11beta-hydroxysteroid dehydrogenase type 2 is the predominant isozyme in the guinea pig placenta: decreases in messenger ribonucleic acid and activity at term. Biol Reprod. 1998;59(6):1378–84.

    PubMed  CAS  Google Scholar 

  51. Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet. 1993;341(8841):339–41.

    PubMed  CAS  Google Scholar 

  52. Stewart PM, Rogerson FM, Mason JI. Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab. 1995;80(3):885–90.

    PubMed  CAS  Google Scholar 

  53. Dave-Sharma S, Wilson RC, Harbison MD, et al. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1998;83(7):2244–54.

    PubMed  CAS  Google Scholar 

  54. Holmes MC, Abrahamsen CT, French KL, Paterson JM, Mullins JJ, Seckl JR. The mother or the fetus? 11beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids. J Neurosci. 2006;26(14):3840–4.

    PubMed  CAS  Google Scholar 

  55. McTernan CL, Draper N, Nicholson H, et al. Reduced Placental 11beta-Hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: An analysis of possible mechanisms. J Clin Endocrinol Metab. 2001;86(10):4979–83.

    PubMed  CAS  Google Scholar 

  56. Shams M, Kilby MD, Somerset DA, et al. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod. 1998;13(4):799–804.

    PubMed  CAS  Google Scholar 

  57. Murphy VE, Zakar T, Smith R, Giles WB, Gibson PG, Clifton VL. Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J Clin Endocrinol Metab. 2002;87(4):1660–8.

    PubMed  CAS  Google Scholar 

  58. Rogerson FM, Kayes K, White PC. No correlation in human placenta between activity or mRNA for the K (type 2) isozyme of 11beta-hydroxysteroid dehydrogenase and fetal or placental weight. Tenth Int Congr Endocrinol Abstr. 1996;P1–231:193.

    Google Scholar 

  59. Rogerson FM, Kayes KM, White PC. Variation in placental type 2 11beta-hydroxysteroid dehydrogenase activity is not related to birth weight or placental weight. Mol Cell Endocrinol. 1997;128(1–2):103–9.

    PubMed  CAS  Google Scholar 

  60. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest. 2004;114(8):1146–57.

    PubMed  CAS  Google Scholar 

  61. Friso S, Pizzolo F, Choi S-W, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008;119:323–7.

    Google Scholar 

  62. van Beek JP, Guan H, Julan L, Yang K. Glucocorticoids stimulate the expression of 11beta-hydroxysteroid dehydrogenase type 2 in cultured human placental trophoblast cells. J Clin Endocrinol Metab. 2004;89(11):5614–21.

    PubMed  Google Scholar 

  63. Sarkar S, Tsai S-W, Nguyen TT, Plevyak M, Padbury JF, Rubin LP. Inhibition of placental 11beta -hydroxysteroid dehydrogenase type 2 by catecholamines via alpha -adrenergic signaling. Am J Physiol. 2001;281(6):R1966–R74.

    CAS  Google Scholar 

  64. Yang K, Julan L, Rubio F, Sharma A, Guan H. Cadmium reduces 11beta-hydroxysteroid dehydrogenase type 2 activity and expression in human placental trophoblast cells. Am J Physiol. 2006;290(1):E135–E42.

    CAS  Google Scholar 

  65. Julan L, Guan H, van Beek JP, Yang K. Peroxisome proliferator-activated receptor delta suppresses 11beta-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells. Endocrinology. 2005;146(3):1482–90.

    PubMed  CAS  Google Scholar 

  66. Hardy DB, Pereria LE, Yang K. Prostaglandins leukotriene b4 are potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 2 activity in human choriocarcinoma jeg-3 cells. Biol Reprod. 1999;61(1):40–5.

    PubMed  CAS  Google Scholar 

  67. Pepe GJ, Albrecht ED. Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev. 1995;16(5):608–48.

    PubMed  CAS  Google Scholar 

  68. Mairesse J, Lesage J, Breton C, et al. Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol. 2007;292(6):E1526–E33.

    CAS  Google Scholar 

  69. Hardy DB, The YangK. Expression of 11beta-hydroxysteroid dehydrogenase type 2 is induced during trophoblast differentiation: effects of hypoxia. J Clin Endocrinol Metab. 2002;87(8):3696–701.

    PubMed  CAS  Google Scholar 

  70. Welberg LAM, Thrivikraman KV, Plotsky PM. Chronic maternal stress inhibits the capacity to up-regulate placental 11beta-hydroxysteroid dehydrogenase type 2 activity. J Endocrinol. 2005;186(3):R7–R12.

    PubMed  CAS  Google Scholar 

  71. Langley-Evans SC, Phillips GJ, Benediktsson R, et al. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 1996;17(2–3):169–72.

    PubMed  CAS  Google Scholar 

  72. Langley-Evans SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J Hypertens. 1997;15(5):537–44.

    PubMed  CAS  Google Scholar 

  73. Sugden MC, Langdown ML, Munns MJ, Holness MJ. Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinemia in the early-growth-retarded adult offspring. Eur J Endocrinol. 2001;145(4):529–39.

    PubMed  CAS  Google Scholar 

  74. Woods LL, Weeks DA. Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R955–R62.

    PubMed  CAS  Google Scholar 

  75. Gatford KL, Wintour EM, De Blasio MJ, Owens JA, Dodic M. Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin Sci. 2000;98(5):553–60.

    PubMed  CAS  Google Scholar 

  76. Dodic M, Abouantoun T, O’Connor A, Wintour EM, Moritz KM. Programming effects of short prenatal exposure to dexamethasone in sheep. Hypertension. 2002;40(5):729–34.

    PubMed  CAS  Google Scholar 

  77. Dodic M, May CN, Wintour EM, Coghlan JP. An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci. 1998;94(2):149–55.

    PubMed  CAS  Google Scholar 

  78. Dodic M, Peers A, Coghlan JP, et al. Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin Sci. 1999;97(1):103–9.

    PubMed  CAS  Google Scholar 

  79. Jensen EC, Gallaher BW, Breier BH, Harding JE. The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J Endocrinol. 2002;174(1):27–36.

    PubMed  CAS  Google Scholar 

  80. Levitt NS, Lindsay RS, Holmes MC, Seckl JR. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology. 1996;64(6):412–8.

    PubMed  CAS  Google Scholar 

  81. Lindsay RS, Lindsay RM, Edwards CR, Seckl JR. Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension. 1996;27(6):1200–4.

    PubMed  CAS  Google Scholar 

  82. Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR. Prenatal glucocorticoid exposure leads to offspring hyperglycemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia. 1996;39(11):1299–305.

    PubMed  CAS  Google Scholar 

  83. de Vries A, Holmes MC, Heijnis A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest. 2007;117(4):1058–67.

    PubMed  Google Scholar 

  84. Nyirenda MJ, Carter R, Tang JI, et al. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11beta-hydroxysteroid dehydrogenase type 1. Diabetes. 2009;58(12):2873–9.

    PubMed  CAS  Google Scholar 

  85. Tangalakis K, Lumbers ER, Moritz KM, Towstoless MK, Wintour EM. Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol. 1992;77(5):709–17.

    PubMed  CAS  Google Scholar 

  86. Berry LM, Polk DH, Ikegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol. 1997;272(6 Pt 2):R1972–9.

    PubMed  CAS  Google Scholar 

  87. Koenen SV, Mecenas CA, Smith GS, Jenkins S, Nathanielsz PW. Effects of maternal betamethasone administration on fetal and maternal blood pressure and heart rate in the baboon at 0.7 of gestation. Am J Obstet Gynecol. 2002;186(4):812–7.

    PubMed  CAS  Google Scholar 

  88. O’Regan D, Kenyon CJ, Seckl JR, Holmes MC. Prenatal dexamethasone ‘programmes’ hypotension, but stress-induced hypertension in adult offspring. J Endocrinol. 2008;196(2):343–52.

    PubMed  Google Scholar 

  89. Dodic M, Samuel C, Moritz K, et al. Impaired cardiac functional reserve and left ventricular hypertrophy in adult sheep after prenatal dexamethasone exposure. Circ Res. 2001;89(7):623–9.

    PubMed  CAS  Google Scholar 

  90. Dodic M, Hantzis V, Duncan J, et al. Programming effects of short prenatal exposure to cortisol. FASEB J. 2002;16(9):1017–26.

    PubMed  CAS  Google Scholar 

  91. Singh RR, Cullen-McEwen LA, Kett MM, et al. Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol. 2007;579(2):503–13.

    PubMed  CAS  Google Scholar 

  92. Moss TJ, Sloboda DM, Gurrin LC, Harding R, Challis JR, Newnham JP. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R960–R70.

    PubMed  CAS  Google Scholar 

  93. Ortiz LA, Quan A, Weinberg A, Baum M. Effect of prenatal dexamethasone on rat renal development. Kidney Int. 2001;59(5):1663–9.

    PubMed  CAS  Google Scholar 

  94. Ortiz LA, Quan A, Zarzar F, Weinberg A, Baum M. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension. 2003;41(2):328–34.

    PubMed  CAS  Google Scholar 

  95. Dickinson H, Walker DW, Wintour EM, Moritz K. Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse. Am J Physiol. 2007;292(1):R453–R61.

    CAS  Google Scholar 

  96. Wintour EM, Moritz KM, Johnson K, Ricardo S, Samuel CS, Dodic M. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol. 2003;549(3):929–35.

    PubMed  CAS  Google Scholar 

  97. Bramlage CP, Schlumbohm C, Pryce CR, et al. Prenatal dexamethasone exposure does not alter blood pressure and nephron number in the young adult marmoset monkey. Hypertension. 2009;54(5):1115–22.

    PubMed  CAS  Google Scholar 

  98. Wyrwoll CS, Mark PJ, Waddell BJ. Developmental programming of renal glucocorticoid sensitivity and the renin-angiotensin system. Hypertension. 2007;50(3):579–84.

    PubMed  CAS  Google Scholar 

  99. Dagan A, Gattineni J, Cook V, Baum M. Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasone. Am J Physiol. 2007;292(3):R1230–5.

    CAS  Google Scholar 

  100. Dagan A, Habib S, Gattineni J, Dwarakanath V, Baum M. Prenatal programming of rat thick ascending limb chloride transport by low-protein diet and dexamethasone. Am J Physiol. 2009;297(1):R93–9.

    CAS  Google Scholar 

  101. O’Regan D, Kenyon CJ, Seckl JR, Holmes MC. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol. 2004;287(5):E863–E70.

    Google Scholar 

  102. Wintour EM, Johnson K, Koukoulas I, Moritz K, Tersteeg M, Dodic M. Programming the cardiovascular system, kidney and the brain - a review. Placenta. 2003;24 Suppl A:S65–S71.

    PubMed  CAS  Google Scholar 

  103. Zimmermann H, Gardner DS, Jellyman JK, Fowden AL, Giussani DA, Forhead AJ. Effect of dexamethasone on pulmonary and renal angiotensin-converting enzyme concentration in fetal sheep during late gestation. Am J Obstet Gynecol. 2003;189(5):1467–71.

    PubMed  CAS  Google Scholar 

  104. Hadoke PW, Lindsay R, Seckl JR, Walker BR, Kenyon C. Altered vascular contractility in adult female rats with hypertension programmed by prenatal glucocorticoid exposure. J Endocrinol. 2006;188:435–42.

    PubMed  CAS  Google Scholar 

  105. Roghair RD, Segar JL, Kilpatrick RA, Segar EM, Scholz TD, Lamb FS. Murine aortic reactivity is programmed equally by maternal low protein diet or late gestation dexamethasone. J Matern Fetal Neonatal Med. 2007;20(11):833–41.

    PubMed  CAS  Google Scholar 

  106. Molnar J, Howe DC, Nijland MJM, Nathanielsz PW. Prenatal dexamethasone leads to both endothelial dysfunction and vasodilatory compensation in sheep. J Physiol. 2003;547(1):61–6.

    PubMed  CAS  Google Scholar 

  107. Roghair RD, Segar JL, Sharma RV, et al. Newborn lamb coronary artery reactivity is programmed by early gestation dexamethasone before the onset of systemic hypertension. Am J Physiol. 2005;289(4):R1169–R76.

    CAS  Google Scholar 

  108. Langdown ML, Holness MJ, Sugden MC. Early growth retardation induced by excessive exposure to glucocorticoids in utero selectively increases cardiac GLUT1 protein expression and Akt/protein kinase B activity in adulthood. J Endocrinol. 2001;169(1):11–22.

    PubMed  CAS  Google Scholar 

  109. Langdown ML, Holness MJ, Sugden MC. Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood. Biochem J. 2003;371(1):61–9.

    PubMed  CAS  Google Scholar 

  110. Wyrwoll CS, Mark PJ, Mori TA, Waddell BJ. Developmental programming of adult hyperinsulinemia, increased proinflammatory cytokine production, and altered skeletal muscle expression of SLC2A4 (GLUT4) and uncoupling protein 3. J Endocrinol. 2008;198(3):571–9.

    PubMed  CAS  Google Scholar 

  111. Nyirenda MJ, Welberg LA, Seckl JR. Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence? J Endocrinol. 2001;170(3):653–60.

    PubMed  CAS  Google Scholar 

  112. Lesage J, Del-Favero F, Leonhardt M, et al. Prenatal stress induces intrauterine growth restriction and programs glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol. 2004;181:291–6.

    PubMed  CAS  Google Scholar 

  113. Avishai-Eliner S, Brunson KL, Sandman CA, Baram TZ. Stressed-out, or in (utero)? Trends Neurosci. 2002;25(10):518–24.

    PubMed  CAS  Google Scholar 

  114. Sloboda DM, Newnham JP, Challis JRG. Repeated maternal glucocorticoid administration and the developing liver in fetal sheep. J Endocrinol. 2002;175:535–43.

    PubMed  CAS  Google Scholar 

  115. De Blasio MJ, Dodic M, Jefferies AJ, Moritz KM, Wintour EM, Owens JA. Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring. Am J Physiol. 2007;293(1):E75–E82.

    Google Scholar 

  116. Pilkis SJ, Granner DK. Molecular physiology of regulation of hepatic gluconeogenesis and glycolysis. Ann Rev Physiol. 1992;54:885–909.

    CAS  Google Scholar 

  117. Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA. 1994;91(19):9151–4.

    PubMed  CAS  Google Scholar 

  118. Rosella G, Zajac JD, Kaczmarczyk SJ, Andrikopoulos S, Proietto J. Impaired suppression of gluconeogenesis induced by overexpression of a noninsulin-responsive phosphoenolpyruvate carboxykinase gene. Mol Endocrinol. 1993;7(11):1456–62.

    PubMed  CAS  Google Scholar 

  119. Xanthopoulos KG, Mirkovitch J. Gene regulation in rodent hepatocytes during development, differentiation and disease. Eur J Biochem. 1993;216(2):353–60.

    PubMed  CAS  Google Scholar 

  120. Cleasby M, Kelly PA, Walker BR, Seckl JR. Programming of rat muscle and fat metabolism by in utero over-exposure to glucocorticoids. Endocrinology. 2003;144:999–1007.

    PubMed  CAS  Google Scholar 

  121. Nyirenda MJ, Dean S, Lyons V, Chapman KE, Seckl JR. Prenatal programming of hepatocyte nuclear factor 4α in the rat: a key mechanism in the ‘foetal origins of hyperglycaemia’? Diabetologia. 2006;V49(6):1412–20.

    Google Scholar 

  122. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127(5):515–26.

    PubMed  CAS  Google Scholar 

  123. Livingstone DE, Jones GC, Smith K, et al. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology. 2000;141(2):560–3.

    PubMed  CAS  Google Scholar 

  124. Rask E, Olsson T, Soderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418–21.

    PubMed  CAS  Google Scholar 

  125. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol. 2008;197(2):189–204.

    PubMed  CAS  Google Scholar 

  126. Gesina E, Blondeau B, Milet A, et al. Glucocorticoid signalling affects pancreatic development through both direct and indirect mechanisms. Diabetologia. 2006;49:2939–47.

    PubMed  CAS  Google Scholar 

  127. Blondeau B, Lesage J, Czernichow P, Dupouy JP, Breant B. Glucocorticoids impair fetal beta-cell development in rats. Am J Physiol Endocrinol Metab. 2001;281(3):E592–9.

    PubMed  CAS  Google Scholar 

  128. Garofano A, Czernichow P, Breant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. 1998;41(9):1114–20.

    PubMed  CAS  Google Scholar 

  129. Gesina E, Tronche F, Herrera P, et al. Dissecting the role of glucocorticoids on pancreas development. Diabetes. 2004;53:2322–9.

    PubMed  CAS  Google Scholar 

  130. Hill DJ, Duvillie B. Pancreatic development and adult diabetes. Pediatr Res. 2000;48(3):269–74.

    PubMed  CAS  Google Scholar 

  131. Nobili V, Day C. Childhood NAFLD: a ticking time-bomb? Gut. 2009;58(11):1442.

    PubMed  Google Scholar 

  132. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–50.

    PubMed  CAS  Google Scholar 

  133. Marceau P, Biron S, Hould FS, et al. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab. 1999;84(5):1513–7.

    PubMed  CAS  Google Scholar 

  134. Pagano G, Pacini G, Musso G, et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology. 2002;35(2):367–72.

    PubMed  CAS  Google Scholar 

  135. Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev. 2008;60:311–57.

    PubMed  CAS  Google Scholar 

  136. Drake AJ, Raubenheimer PJ, Kerrigan D, McInnes KJ, Seckl JR, Walker AJ. Prenatal dexamethasone programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not obesity on a high fat diet. Endocrinology. 2010;151(4):1581–1587.

    PubMed  CAS  Google Scholar 

  137. Bruce KD, Cagampang FR, Argenton M, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50(6):1796–808.

    PubMed  CAS  Google Scholar 

  138. Magee TR, Han G, Cherian B, Khorram O, Ross MG, Desai M. Down-regulation of transcription factor peroxisome proliferator-activated receptor in programmed hepatic lipid dysregulation and inflammation in intrauterine growth-restricted offspring. Am J Obstet Gynecol. 2008;199(3):271.e1–5.

    PubMed  Google Scholar 

  139. Fraser A, Ebrahim S, Davey Smith G, Lawlor DA. The associations between birthweight and adult markers of liver damage and function. Paediatr Perinat Epidemiol. 2008;22(1):12–21.

    PubMed  Google Scholar 

  140. Dahlgren J, Nilsson C, Jennische E, et al. Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol. 2001;281(2):E326–E34.

    CAS  Google Scholar 

  141. Whorwood CB, Firth KM, Budge H, Symonds ME. Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep. Endocrinology. 2001;142(7):2854–64.

    PubMed  CAS  Google Scholar 

  142. Gnanalingham MG, Mostyn A, Symonds ME, Stephenson T. Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2. Am J Physiol. 2005;289(5):R1407–R15.

    CAS  Google Scholar 

  143. Bispham J, Gopalakrishnan GS, Dandrea J, et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology. 2003;144(8):3575–85.

    PubMed  CAS  Google Scholar 

  144. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–70.

    PubMed  CAS  Google Scholar 

  145. Rayburn WF. Glucocorticoid therapy for rheumatic diseases: maternal, fetal, and breast-feeding considerations. Am J Reprod Immunol. 1992;28:138–40.

    PubMed  CAS  Google Scholar 

  146. Kattner E, Metze B, Waiss E, Obladen M. Accelerated lung maturation following maternal steroid treatment in infants born before 30 weeks gestation. J Perinat Med. 1992;20:449–57.

    PubMed  CAS  Google Scholar 

  147. Crowley P. Prophylactic corticosteroids for preterm birth. Cochrane Database Syst Rev. 2000;2:CD000065.

    Google Scholar 

  148. Brocklehurst P, Gates S, McKenzie-McHarg K, Alfirevic Z, Chamberlain G. Are we prescribing multiple courses of antenatal corticosteroids? A survey of practice in the UK. Br J Obstet Gynaecol. 1999;106(9):977–9.

    PubMed  CAS  Google Scholar 

  149. Whitelaw A, Thoresen M. Antenatal steroids and the developing brain. Arch Dis Child Fetal Neonatal Ed. 2000;83(2):F154–7.

    PubMed  CAS  Google Scholar 

  150. Forest MG, David M, Morel Y. Prenatal diagnosis and treatment of 21-hydroxylase deficiency. J Steroid Biochem Mol Biol. 1993;45(1–3):75–82.

    PubMed  CAS  Google Scholar 

  151. Mercado AB, Wilson RC, Cheng KC, Wei JQ, New MI. Prenatal treatment and diagnosis of congenital adrenal hyperplasia owing to steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1995;80(7):2014–20.

    PubMed  CAS  Google Scholar 

  152. Aghajafari F, Murphy K, Willan A, et al. Multiple courses of antenatal corticosteroids: A systematic review and meta-analysis. Am J Obstet Gynecol. 2001;185:1073–80.

    PubMed  CAS  Google Scholar 

  153. Dessens AB, Haas HS-d, Koppe JG. Twenty-year follow-up of antenatal corticosteroid treatment. Pediatrics. 2000;105(6):e77.

    PubMed  CAS  Google Scholar 

  154. Doyle LW, Ford GW, Davis NM, Callanan C. Antenatal corticosteroid therapy and blood pressure at 14 years of age in preterm children. Clin Sci. 2000;98(2):137–42.

    PubMed  CAS  Google Scholar 

  155. Huh S, Andrew R, Rich-Edwards J, Kleinman K, Seckl J, Gillman M. Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med. 2008;6(1):25.

    PubMed  Google Scholar 

  156. Finken MJJ, Keijzer-Veen MG, Dekker FW, et al. Antenatal glucocorticoid treatment is not associated with long-term metabolic risks in individuals born before 32 weeks of gestation. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F442–7.

    PubMed  CAS  Google Scholar 

  157. Ahmad I, Beharry KDA, Valencia AM, et al. Influence of a single course of antenatal betamethasone on the maternal-fetal insulin-IGF-GH axis in singleton pregnancies. Growth Horm IGF Res. 2006;16(4):267–75.

    PubMed  CAS  Google Scholar 

  158. Dalziel SR, Walker NK, Parag V, et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005;365(9474):1856–62.

    PubMed  CAS  Google Scholar 

  159. Phillips DI, Walker BR, Reynolds RM, et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000;35(6):1301–6.

    PubMed  CAS  Google Scholar 

  160. Clark PM, Hindmarsh PC, Shiell AW, Law CM, Honour JW, Barker DJ. Size at birth and adrenocortical function in childhood. Clin Endocrinol. 1996;45(6):721–6.

    CAS  Google Scholar 

  161. Phillips DI, Barker DJ, Fall CH, et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab. 1998;83(3):757–60.

    PubMed  CAS  Google Scholar 

  162. Jones A, Godfrey KM, Wood P, Osmond C, Goulden P, Phillips DIW. Fetal growth and the adrenocortical response to psychological stress. J Clin Endocrinol Metab. 2006;91(5):1868–71.

    PubMed  CAS  Google Scholar 

  163. Reynolds RM, Walker BR, Syddall HE, et al. Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab. 2001;86(1):245–50.

    PubMed  CAS  Google Scholar 

  164. Waddington CH. The strategy of the genes. London: Allen and Unwin; 1957.

    Google Scholar 

  165. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305(5691):1733–6.

    PubMed  CAS  Google Scholar 

  166. Drake AJ, van den Driesche S, Scott HM, Hutchison GR, Seckl JR, Sharpe RM. Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology. 2009;150(11):5055–64.

    PubMed  CAS  Google Scholar 

  167. Drake AJ, Liu L. Intergenerational transmission of programmed effects: public health consequences. Trends in Endocrinology and Metabolism 2010;21(4):206–213.

    PubMed  CAS  Google Scholar 

  168. Burdge GC, Slater-Jefferies JL, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97:435–9.

    PubMed  CAS  Google Scholar 

  169. Harrison M, Langley-Evans SC. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr. 2009;101(07):1020–30.

    PubMed  CAS  Google Scholar 

  170. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    PubMed  CAS  Google Scholar 

  171. Zambrano E, Martinez-Samayoa PM, Bautista CJ, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol. 2005;566(1):225–36.

    PubMed  CAS  Google Scholar 

  172. Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999;286(5442):1155–8.

    PubMed  CAS  Google Scholar 

  173. Anderson CM, Lopez F, Zimmer A, Benoit JN. Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague-Dawley rat offspring. Biol Reprod. 2006;74(3):538–44.

    PubMed  CAS  Google Scholar 

  174. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58(2):460–8.

    PubMed  CAS  Google Scholar 

  175. Benyshek DC, Johnston CS, Martin JF. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia. 2006;49:1117–9.

    PubMed  CAS  Google Scholar 

  176. Samuelsson A-M, Matthews PA, Argenton M, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51(2):383–92.

    PubMed  CAS  Google Scholar 

  177. Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol. 2005;565(1):3–8.

    PubMed  CAS  Google Scholar 

  178. Khan IY, Dekou V, Douglas G, et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R127–R33.

    PubMed  CAS  Google Scholar 

  179. Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol. 2007;92(2):287–98.

    PubMed  CAS  Google Scholar 

  180. Classen TJ. Measures of the intergenerational transmission of body mass index between mothers and their children in the United States, 1981–2004. Econ Hum Biol. 2010;8(1):30–43.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Drake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Drake, A.J., Seckl, J.R. (2011). Prenatal Stress, Glucocorticoids, and the Metabolic Syndrome. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics