Skip to main content

High-Carbohydrate Intake Only During the Suckling Period Results in Adult-Onset Obesity in Mother as well as Offspring

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1288 Accesses

Abstract

Abstract The prevalence of obesity has escalated at alarming rates, particularly in Westernized societies. Although consumption of fat-enriched diets and sedentary lifestyles are implicated in the etiology of the obesity epidemic, the increase in prevalence within the past 30 years implicates a role for other factors. Altered nutritional experiences during early periods in life (fetal and suckling), through the phenomenon of metabolic programming, may contribute to the development of metabolic disorders in adulthood. Data from epidemiological studies, as well as from appropriate animal models, have shown that maternal overnutrition or undernutrition during pregnancy increases the risk for poor health outcomes in the offspring. Less information is available on the role of an altered dietary experience in the suckling period on metabolic programming for adult-onset disorders. We have developed a rat model for adult-onset obesity by artificially rearing newborn rat pups on a high-carbohydrate (HC) milk formula during the suckling period. HC-treated rats (F0 generation) manifest chronic hyperinsulinemia and adult-onset obesity. The obese and hyperinsulinemic intrauterine environment encountered in the HC female rats (F0) resulted in programming of chronic hyperinsulinemia and adult-onset obesity in the offspring (F1 generation). That maternal obesity begets offspring obesity is being increasingly recognized. A similar generational effect may contribute to obesity in humans. The mechanisms belying the generational effect in the obese mother are not well understood, but are necessary to develop intervention strategies to curb the tide of the obesity epidemic. The HC rat model is a useful tool for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirschhorn JN. Genomewide association studies–illuminating biologic pathways. N Engl J Med. 2009;360(17):1699–701.

    Article  PubMed  CAS  Google Scholar 

  2. Kermack W, McKendrick A, McKinely P. Death rates in Great Britain and Sweden: some general regularities and their significance. Lancet. 1934;223:698–703.

    Article  Google Scholar 

  3. Dorner G, Plagemann A, Ruckert J, et al. Teratogenetic maternofoetal transmission and prevention of diabetes susceptibility. Exp Clin Endocrinol. 1988;91(3):247–58.

    Article  PubMed  CAS  Google Scholar 

  4. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.

    Article  PubMed  CAS  Google Scholar 

  5. Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991;156(38–50):Discussion 50–35.

    Google Scholar 

  6. Barker DJ. In utero programming of chronic disease. Clin Sci (Lond). 1998;95(2):115–28.

    Article  CAS  Google Scholar 

  7. Barker DJ. Fetal nutrition and cardiovascular disease in later life. Br Med Bull. 1997;53(1):96–108.

    Article  PubMed  CAS  Google Scholar 

  8. Barker DJ, Osmond C, Forsen TJ, et al. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–9.

    Article  PubMed  CAS  Google Scholar 

  9. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  PubMed  CAS  Google Scholar 

  10. Godfrey K. The developmental origins hypothesis: epidemiology. In: Gluckman PD, Hanson MA, editors. Developmental origins of health and disease. Cambridge, MA: Cambridge University Press; 2006. pp. 6–32.

    Chapter  Google Scholar 

  11. Ozanne SE, Hales CN. The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proc Nutr Soc. 1999;58(3):615–9.

    Article  PubMed  CAS  Google Scholar 

  12. Dahri S, Snoeck A, Reusens-Billen B, et al. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes. 1991;40 Suppl 2:115–20.

    PubMed  CAS  Google Scholar 

  13. Plagemann A, Harder T, Rake A, et al. Hypothalamic nuclei are malformed in weanling offspring of low protein malnourished rat dams. J Nutr. 2000;130(10):2582–9.

    PubMed  CAS  Google Scholar 

  14. Garofano A, Czernichow P, Breant B. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. 1998;41(9):1114–20.

    Article  PubMed  CAS  Google Scholar 

  15. Aerts L, Van Assche FA. Intra-uterine transmission of disease. Placenta. 2003;24(10):905–11.

    Article  PubMed  CAS  Google Scholar 

  16. Aerts L, Van Assche FA. Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol. 2006;38(5–6):894–903.

    Article  PubMed  CAS  Google Scholar 

  17. Nohr EA, Timpson NJ, Andersen CS, et al. Severe obesity in young women and reproductive health: the Danish National Birth Cohort. PLoS One. 2009;4(12):e8444. doi:10.1371/journal.pone.0008444.

    Article  PubMed  Google Scholar 

  18. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81.

    Article  PubMed  CAS  Google Scholar 

  19. Khan IY, Dekou V, Douglas G, et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R127–R33.

    Article  PubMed  CAS  Google Scholar 

  20. Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R941–8.

    PubMed  Google Scholar 

  21. Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav. 2006;88(3):234–43.

    Article  PubMed  CAS  Google Scholar 

  22. Guilloteau P, Zabielski R, Hammon HM, Metges CC. Adverse effects of nutritional programming during prenatal and early postnatal life, some aspects of regulation and potential prevention and treatments. J Physiol Pharmacol. 2009;60 Suppl 3:17–35.

    PubMed  Google Scholar 

  23. Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond. 2006;361(1471):1107–21.

    Article  CAS  Google Scholar 

  24. Petry CJ, Ozanne SE, Hales CN. Programming of intermediary metabolism. Mol Cell Endocrinol. 2001;185(1–2):81–91.

    Article  PubMed  CAS  Google Scholar 

  25. Umberto S, Barker D. Offspring of diabetic pregnancy: long-term consequences. Semin Fetal Neonatal Med. 2009;14:119–24.

    Article  Google Scholar 

  26. Kaung HL. Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat. Dev Dyn. 1994;200(2):163–75.

    Article  PubMed  CAS  Google Scholar 

  27. Grove KL, Allen S, Grayson BE, Smith MS. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience. 2003;116(2):393–406.

    Article  PubMed  CAS  Google Scholar 

  28. Haisma H, Coward WA, Albernaz E, et al. Breast milk and energy intake in exclusively, predominantly, and partially breast-fed infants. Eur J Clin Nutr. 2003;57(12):1633–42.

    Article  PubMed  CAS  Google Scholar 

  29. Mortensen EL, Michaelsen KF, Sanders SA, Reinisch JM. The association between duration of breastfeeding and adult intelligence. JAMA. 2002;287(18):2365–71.

    Article  PubMed  Google Scholar 

  30. Baker JL, Michaelsen KF, Rasmussen KM, Sorensen TI. Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction are associated with infant weight gain. Am J Clin Nutr. 2004;80(6):1579–88.

    PubMed  CAS  Google Scholar 

  31. Owen CG, Martin RM, Whincup PH, et al. The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr. 2005;82(6):1298–307.

    PubMed  CAS  Google Scholar 

  32. Owen CG, Martin RM, Whincup PH, et al. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115(5):1367–77.

    Article  PubMed  Google Scholar 

  33. McCance RA. Food, growth, and time. Lancet. 1962;2:671–6.

    Article  PubMed  CAS  Google Scholar 

  34. Davidowa H, Li Y, Plagemann A. The main effect of cocaine- and amphetamine-regulated transcript (CART) peptide on hypothalamic neuronal activity depends on the nutritional state of rats. Neuroendocrinol Lett. 2005;26(1):29–34.

    PubMed  CAS  Google Scholar 

  35. Davidowa H, Plagemann A. Hypothalamic neurons of postnatally overfed, overweight rats respond differentially to corticotropin-releasing hormones. Neurosci Lett. 2004;371(1):64–8.

    Article  PubMed  CAS  Google Scholar 

  36. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. 2005;86(5):661–8.

    Article  PubMed  CAS  Google Scholar 

  37. Fahrenkrog S, Harder T, Stolaczyk E, et al. Cross-fostering to diabetic rat dams affects early development of mediobasal hypothalamic nuclei regulating food intake, body weight, and metabolism. J Nutr. 2004;134(3):648–54.

    PubMed  CAS  Google Scholar 

  38. Patel MS, Srinivasan M. Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods. In: Hay WW, Thureen, PJ, editors. Neonatal nutrition and metabolism. Cambridge, MA: Cambridge University Press; 2006. pp. 76–90.

    Chapter  Google Scholar 

  39. Patel MS, Srinivasan M, Laychock SG. Metabolic programming: role of nutrition in the immediate postnatal life. J Inherit Metab Dis. 2009;32(2):218–28.

    Article  PubMed  CAS  Google Scholar 

  40. Srinivasan M, Patel MS. Metabolic programming in the immediate postnatal period. Trends Endocrinol Metab. 2008;19(4):146–52.

    Article  PubMed  CAS  Google Scholar 

  41. Vadlamudi S, Kalhan SC, Patel MS. Persistence of metabolic consequences in the progeny of rats fed a HC formula in their early postnatal life. Am J Physiol. 1995;269(4 Pt 1):E731–8.

    PubMed  CAS  Google Scholar 

  42. Hiremagalur BK, Vadlamudi S, Johanning GL, Patel MS. Long-term effects of feeding high carbohydrate diet in pre-weaning period by gastrostomy: a new rat model for obesity. Int J Obes Relat Metab Disord. 1993;17(9):495–502.

    PubMed  CAS  Google Scholar 

  43. Haney PM, Estrin CR, Caliendo A, Patel MS. Precocious induction of hepatic glucokinase and malic enzyme in artificially reared rat pups fed a high-carbohydrate diet. Arch Biochem Biophys. 1986;244(2):787–94.

    Article  PubMed  CAS  Google Scholar 

  44. Srinivasan M, Mitrani P, Sadhanandan G, et al. A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol. 2008;197(3):565–74.

    Article  PubMed  CAS  Google Scholar 

  45. Plagemann A, Harder T, Rake A, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999;836(1–2):146–55.

    Article  PubMed  CAS  Google Scholar 

  46. Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Gen. 2006;70(4):295–301.

    Article  CAS  Google Scholar 

  47. Srinivasan M, Dodds C, Ghanim H, et al. Maternal obesity and fetal programming: effects of a high-carbohydrate nutritional modification in the immediate postnatal life of female rats. Am J Physiol Endocrinol Metab. 2008;295(4):E895–E903.

    Article  PubMed  CAS  Google Scholar 

  48. Srinivasan M, Aalinkeel R, Song F, et al. Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype. Am J Physiol Endocrinol Metab. 2006;290(1):E129–E34.

    Article  PubMed  CAS  Google Scholar 

  49. Srinivasan M, Aalinkeel R, Song F, Patel MS. Programming of islet functions in the progeny of hyperinsulinemic/obese rats. Diabetes. 2003;52(4):984–90.

    Article  PubMed  CAS  Google Scholar 

  50. Srinivasan M, Vadlamudi S, Patel MS. Glycogen synthase regulation in hyperinsulinemic/obese progeny of rats fed a high carbohydrate formula in their infancy. Int J Obes Relat Metab Disord. 1996;20(11):981–9.

    PubMed  CAS  Google Scholar 

  51. Cerf ME, Williams K, Nkomo XI, et al. Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1122–8.

    Article  PubMed  CAS  Google Scholar 

  52. Levin BE, Govek E. Gestational obesity accentuates obesity in obesity-prone progeny. Am J Physiol. 1998;275(4 Pt 2):R1374–9.

    PubMed  CAS  Google Scholar 

  53. Woods SC, Seeley RJ, Rushing PA, et al. A controlled high-fat diet induces an obese syndrome in rats. J Nutr. 2003;133(4):1081–7.

    PubMed  CAS  Google Scholar 

  54. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF. Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci. 2008;28(46):12107–19.

    Article  PubMed  CAS  Google Scholar 

  55. Grayson BE, Levasseur PR, Williams SM, et al. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology 2010;151:1622–32.

    Article  PubMed  CAS  Google Scholar 

  56. Srinivasan M, Katewa SD, Palaniyappan A, et al. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab. 2006;291(4):E792–9.

    Article  PubMed  CAS  Google Scholar 

  57. Gupta A, Srinivasan M, Thamadilok S, Patel MS. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. 2009;200(3):293–300.

    Article  PubMed  CAS  Google Scholar 

  58. Bouret SG, Simerly RB. Development of leptin-sensitive circuits. J Neuroendocrinol. 2007;19(8):575–82.

    Article  PubMed  CAS  Google Scholar 

  59. Plagemann A, Heidrich I, Rohde W, Gotz F, Dorner G. Hyperinsulinism during differentiation of the hypothalamus is a diabetogenic and obesity risk factor in rats. Neuroendocrinol Lett. 1992;5:373–8.

    Google Scholar 

  60. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

    Article  PubMed  CAS  Google Scholar 

  61. Aagaard-Tillery KM, Grove K, Bishop J, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(2):91–102.

    Article  PubMed  CAS  Google Scholar 

  62. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316–24.

    PubMed  CAS  Google Scholar 

  63. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008;283(20):13611–26.

    Article  PubMed  CAS  Google Scholar 

  64. Kuzawa CW, Sweet E. Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health. Am J Hum Biol. 2009;21(1):2–15.

    Article  PubMed  Google Scholar 

  65. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41.

    Article  PubMed  CAS  Google Scholar 

  66. Heslehurst N, Rankin J, Wilkinson JR, Summerbell CD. A nationally representative study of maternal obesity in England, UK: trends in incidence and demographic inequalities in 619,323 births, 1989–2007. Int J Obes (Lond). 2010;34(3):420–8.

    Article  CAS  Google Scholar 

  67. Gillman MW, Barker D, Bier D, et al. Meeting report on the 3rd international congress on developmental origins of health and disease (DOHaD). Pediatr Res. 2007;61(5 Pt 1):625–9.

    Article  PubMed  Google Scholar 

  68. Lawlor DA, Smith GD, O’Callaghan M, et al. Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater-university study of pregnancy and its outcomes. Am J Epidemiol. 2007;165(4):418–24.

    Article  PubMed  Google Scholar 

  69. Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11.

    Article  PubMed  CAS  Google Scholar 

  70. Schack-Nielsen L, Michaelsen KF, Gamborg M, et al. Gestational weight gain in relation to offspring body mass index and obesity from infancy through adulthood. Int J Obes (Lond). 2010:34(1):67–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work summarized in this review on the HC rat model was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grants DK-51601 and DK-61518 awarded to MSP. We thank Dr. Gail Willsky (Department of Biochemistry, University at Buffalo) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulchand S. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Patel, M.S., Srinivasan, M. (2011). High-Carbohydrate Intake Only During the Suckling Period Results in Adult-Onset Obesity in Mother as well as Offspring. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics