Skip to main content

Experimental Models of Maternal Obesity and High-Fat Diet During Pregnancy and Programmed Obesity in the Offspring

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

Abstract

Over the past three decades, the worldwide burden of obesity and associated metabolic and cardiovascular disease has increased significantly. In addition to adult lifestyle risk factors it is becoming increasingly apparent that exposure to a suboptimal environment during in utero and early postnatal developmental critical windows can result in an elevated propensity to develop obesity and related diseases. Studies in rodents, sheep, and non-human primates offer evidence that maternal obesity and consumption of a high-fat diet during pregnancy and sucking can program alterations to fetal and neonatal development. This drives a phenotype of obesity, metabolic and cardiovascular disease, and disturbances in hypothalamic control of appetite and sympathetic nervous system activity. Here we discuss the relative importance of maternal obesity and dietary manipulation drawing from studies in a range of animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organisation. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii, 1–253.

    Google Scholar 

  2. Pitkin RM, Institute of Medicine. Nutritional status and weight gain. In: editors. Subcommittee on nutritional status and weight gain during pregnancy, food and nutrition board. Nutrition during pregnancy. Washington, DC: National Academy Press, 1990. p. 27. International Obesity Task Force, 1990.

    Google Scholar 

  3. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med. 1977;31:91–5.

    PubMed  CAS  Google Scholar 

  4. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    Article  PubMed  CAS  Google Scholar 

  5. Hales C, Barker D, Clark P, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  PubMed  CAS  Google Scholar 

  6. Barker DJ, Hales CN, Fall CH, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  PubMed  CAS  Google Scholar 

  7. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.

    Article  PubMed  CAS  Google Scholar 

  8. Armitage JA, Khan IY, Taylor PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355–77.

    Article  PubMed  CAS  Google Scholar 

  9. Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol. 2005;565:3–8.

    Article  PubMed  CAS  Google Scholar 

  10. Wells JC. Historical cohort studies and the early origins of disease hypothesis: making sense of the evidence. Proc Nutr Soc. 2009;68:179–88.

    Article  PubMed  Google Scholar 

  11. Kanagalingam MG, Forouhi NG, Greer IA, et al. Changes in booking body mass index over a decade: retrospective analysis from a Glasgow Maternity Hospital. BJOG. 2005;112:1431–3.

    Article  PubMed  Google Scholar 

  12. Galtier-Dereure F, Boegner C, Bringer J. Obesity and pregnancy: complications and cost. Am J Clin Nutr. 2000;71:1242S–8S.

    PubMed  CAS  Google Scholar 

  13. Callaway LK, Prins JB, Chang AM, et al. The prevalence and impact of overweight and obesity in an Australian obstetric population. Med J Aust. 2006;184:56–9.

    PubMed  Google Scholar 

  14. Armitage JA, Poston L, Taylor PD. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res. 2008;36:73–84.

    Article  PubMed  Google Scholar 

  15. Ostlund I, Haglund B, Hanson U. Gestational diabetes and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2004;113:12–6.

    Article  PubMed  Google Scholar 

  16. Kumari AS. Pregnancy outcome in women with morbid obesity. Int J Gynaecol Obstet. 2001;73:101–7.

    Article  PubMed  CAS  Google Scholar 

  17. Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ. 2001;323:1331–5.

    Article  PubMed  CAS  Google Scholar 

  18. Seidman DS, Laor A, Gale R, et al. A longitudinal study of birth weight and being overweight in late adolescence. Am J Dis Child. 1991;145:782–5.

    PubMed  CAS  Google Scholar 

  19. Curhan GC, Chertow GM, Willett WC, et al. Birth weight and adult hypertension and obesity in women. Circulation. 1996;94:1310–5.

    Article  PubMed  CAS  Google Scholar 

  20. Curhan GC, Willett WC, Rimm EB, et al. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94:3246–50.

    Article  PubMed  CAS  Google Scholar 

  21. Edwards LE, Hellerstedt WL, Alton IR, et al. Pregnancy complications and birth outcomes in obese and normal-weight women: effects of gestational weight change. Obstet Gynecol. 1996;87:389–94.

    Article  PubMed  CAS  Google Scholar 

  22. Perlow JH, Morgan MA, Montgomery D, et al. Perinatal outcome in pregnancy complicated by massive obesity. Am J Obstet Gynecol. 1992;167:958–62.

    Article  PubMed  CAS  Google Scholar 

  23. Surkan PJ, Hsieh CC, Johansson AL, et al. Reasons for increasing trends in large for gestational age births. Obstet Gynecol. 2004;104:720–6.

    Article  PubMed  Google Scholar 

  24. Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci. 1994;86:217–22.

    PubMed  CAS  Google Scholar 

  25. Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol. 2007;92:287–98.

    Article  PubMed  CAS  Google Scholar 

  26. Catalano PM, Kirwan JP, Haugel-de Mouzon S, et al. Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus. J Nutr. 2003;133:1674S–83S.

    PubMed  CAS  Google Scholar 

  27. Khan IY, Taylor PD, Dekou V, et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension. 2003;41:168–75.

    Article  PubMed  CAS  Google Scholar 

  28. Guo F, Jen KL. High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav. 1995;57:681–6.

    Article  PubMed  CAS  Google Scholar 

  29. Samuelsson AM, Matthews PA, Argenton M, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51:383–92.

    Article  PubMed  CAS  Google Scholar 

  30. Samuelsson AM, Morris A, Igosheva N, et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension. 2010;55:76–82.

    Article  PubMed  CAS  Google Scholar 

  31. Armitage JA, Lakasing L, Taylor PD, et al. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J Physiol. 2005;565:171–84.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor PD, Khan IY, Hanson MA, et al. Impaired EDHF-mediated vasodilatation in adult offspring of rats exposed to a fat-rich diet in pregnancy. J Physiol. 2004;558:943–51.

    Article  PubMed  CAS  Google Scholar 

  33. Taylor PD, McConnell J, Khan IY, et al. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288:R134–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bayol SA, Simbi BH, Fowkes RC, et al. A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology. 2010;151:1451–61.

    Article  PubMed  CAS  Google Scholar 

  35. Oben JA, Patel T, Mouralidarane A, et al. Maternal obesity programmes offspring development of non-alcoholic fatty pancreas disease. Biochem Biophys Res Commun. 2010;394:24–8.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor PD, Persaud SJ, Jones PM, et al. Reduced insulin secretory capacity in the hypertensive adult offspring of rats exposed to a high fat diet in pregnancy. J Soc Gynecol Invest. 2004;11:305A.

    Google Scholar 

  37. Armitage JA, Gupta S, Wood C, et al. Maternal dietary supplementation with saturated, but not monounsaturated or polyunsaturated fatty acids, leads to tissue-specific inhibition of offspring Na+, K+-ATPase. J Physiol. 2008;586:5013–22.

    Article  PubMed  CAS  Google Scholar 

  38. Kirk SL, Samuelsson AM, Argenton M, et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One. 2009;4:e5870.

    Google Scholar 

  39. Pavey DE, Widdowson EM, Robinson MP. Body lipids of guinea pigs exposed to different dietary fats from mid-gestation to 3 months of age. II. The fatty acid composition of the lipids of liver, plasma, adipose tissue, muscle and red cell membranes at birth. Nutr Metab. 1976;20:351–63.

    Article  PubMed  CAS  Google Scholar 

  40. McMillen IC, Rattanatray L, Duffield JA, et al. The early origins of later obesity: pathways and mechanisms. Adv Exp Med Biol. 2009;646:71–81.

    Article  PubMed  Google Scholar 

  41. Muhlhausler BS, Duffield JA, McMillen IC. Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology. 2007;148:6157–63.

    Article  PubMed  CAS  Google Scholar 

  42. Zhu MJ, Du M, Nathanielsz PW, et al. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010 vol. 31(5):387–91.

    Article  PubMed  CAS  Google Scholar 

  43. Zhu MJ, Han B, Tong J, et al. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J Physiol. 2008;586:2651–64.

    Article  PubMed  CAS  Google Scholar 

  44. Yan X, Zhu MJ, Xu W, et al. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology. 2010;151:380–7.

    Article  PubMed  CAS  Google Scholar 

  45. Capper JL, Wilkinson RG, Mackenzie AM, et al. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. J Nutr. 2006;136:397–403.

    PubMed  CAS  Google Scholar 

  46. Grayson BE, Levasseur PR, Williams SM, et al. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology. 2010;151:1622–32.

    Article  PubMed  CAS  Google Scholar 

  47. Aagaard-Tillery KM, Grove K, Bishop J, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41:91–102.

    Article  PubMed  CAS  Google Scholar 

  48. Sullivan EL, Grayson B, Takahashi D, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30:3826–30.

    Article  PubMed  CAS  Google Scholar 

  49. McMillen IC, Adam CL, Muhlhausler BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005;565:9–17.

    Article  PubMed  CAS  Google Scholar 

  50. Khan IY, Dekou V, Douglas G, et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288:R127–R33.

    Article  PubMed  CAS  Google Scholar 

  51. Taylor PD, Khan IY, Lakasing L, et al. Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp Physiol. 2003;88:389–98.

    Article  PubMed  CAS  Google Scholar 

  52. Pederson J. The pregnant diabetic and her newborn. 2nd ed. Baltimore, MD: Williams and Wilkins; 1977.

    Google Scholar 

  53. Munilla MA, Herrera E. Maternal hypertriglyceridemia during late pregnancy does not affect the increase in circulating triglycerides caused by the long-term consumption of a sucrose-rich diet by rats. J Nutr. 2000;130:2883–8.

    PubMed  CAS  Google Scholar 

  54. Soria A, Chicco A, Mocchiutti N, et al. A sucrose-rich diet affects triglyceride metabolism differently in pregnant and nonpregnant rats and has negative effects on fetal growth. J Nutr. 1996;126:2481–6.

    PubMed  CAS  Google Scholar 

  55. Ghusain-Choueiri AA, Rath EA. Effect of carbohydrate source on lipid metabolism in lactating mice and on pup development. Br J Nutr. 1995;74:821–31.

    PubMed  CAS  Google Scholar 

  56. Myers KP, Ferris J, Sclafani A. Flavor preferences conditioned by postingestive effects of nutrients in preweanling rats. Physiol Behav. 2005;84:407–19.

    Article  PubMed  CAS  Google Scholar 

  57. Frazier CR, Mason P, Zhuang X, et al. Sucrose exposure in early life alters adult motivation and weight gain. PLoS One. 2008;3:e3221.

    Google Scholar 

  58. Jen KL, Rochon C, Zhong SB, et al. Fructose and sucrose feeding during pregnancy and lactation in rats changes maternal and pup fuel metabolism. J Nutr. 1991;121:1999–2005.

    PubMed  CAS  Google Scholar 

  59. Weisinger HS, Armitage JA, Sinclair AJ, et al. Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nat Med. 2001;7:258–9.

    Article  PubMed  CAS  Google Scholar 

  60. Mathai ML, Soueid M, Chen N, et al. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling? Obes Res. 2004;12:1886–94.

    Article  PubMed  CAS  Google Scholar 

  61. Armitage JA, Pearce AD, Sinclair AJ, et al. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency. Lipids. 2003;38:459–64.

    Article  PubMed  CAS  Google Scholar 

  62. Siemelink M, Verhoef A, Dormans JA, et al. Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia. 2002;45:1397–403.

    Article  PubMed  CAS  Google Scholar 

  63. McCurdy CE, Bishop JM, Williams SM, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119:323–35.

    PubMed  CAS  Google Scholar 

  64. Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 1997;273:R725–R30.

    PubMed  CAS  Google Scholar 

  65. Levin BE, Dunn-Meynell AA. Maternal obesity alters adiposity and monoamine function in genetically predisposed offspring. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1087–R93.

    PubMed  Google Scholar 

  66. Zambrano E, Martinez-Samayoa PM, Rodriguez-Gonzalez GL, et al. Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol. 2010 vol. 588(Pt 10):1791–9.

    Article  PubMed  CAS  Google Scholar 

  67. White CL, Purpera MN, Morrison CD. Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1464–R72.

    Article  PubMed  CAS  Google Scholar 

  68. Akyol A, Langley-Evans SC, McMullen S. Obesity induced by cafeteria feeding and pregnancy outcome in the rat. Br J Nutr. 2009;102:1601–10.

    Article  PubMed  CAS  Google Scholar 

  69. Napoli C, Glass CK, Witztum JL, et al. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: fate of early lesions in children (FELIC) study. Lancet. 1999;354:1234–41.

    Article  PubMed  CAS  Google Scholar 

  70. Napoli C, Witztum JL, Calara F, et al. Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circ Res. 2000;87:946–52.

    Article  PubMed  CAS  Google Scholar 

  71. Napoli C, de Nigris F, Welch JS, et al. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation. 2002;105:1360–7.

    Article  PubMed  CAS  Google Scholar 

  72. Grove KL, Allen S, Grayson BE, et al. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience. 2003;116:393–406.

    Article  PubMed  CAS  Google Scholar 

  73. Grove KL, Grayson BE, Glavas MM, et al. Development of metabolic systems. Physiol Behav. 2005;86:646–60.

    Article  PubMed  CAS  Google Scholar 

  74. McCance RA. Food, growth, and time. Lancet. 1962;2:621–6.

    Article  PubMed  CAS  Google Scholar 

  75. Bassett DR, Craig BW. Influence of early nutrition on growth and adipose tissue characteristics in male and female rats. J Appl Physiol. 1988;64:1249–56.

    Article  PubMed  CAS  Google Scholar 

  76. Faust IM, Johnson PR, Hirsch J. Long-term effects of early nutritional experience on the development of obesity in the rat. J Nutr. 1980;110:2027–34.

    PubMed  CAS  Google Scholar 

  77. Plagemann A, Harder T, Rake A, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999;836:146–55.

    Article  PubMed  CAS  Google Scholar 

  78. Schmidt I, Fritz A, Scholch C, et al. The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int J Obes Relat Metab Disord. 2001;25:1168–74.

    Article  PubMed  CAS  Google Scholar 

  79. Velkoska E, Cole TJ, Dean RG, et al. Early undernutrition leads to long-lasting reductions in body weight and adiposity whereas increased intake increases cardiac fibrosis in male rats. J Nutr. 2008;138:1622–7.

    PubMed  CAS  Google Scholar 

  80. Plagemann A, Harder T, Brunn M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009;587:4963–76.

    Article  PubMed  CAS  Google Scholar 

  81. Aubert R, Suquet J-P, Lemonnier D. Long-term morphological and metabolic effects of early under- and over-nutrition in mice. J Nutr. 1980;110:649–61.

    PubMed  CAS  Google Scholar 

  82. Plagemann A, Harder T, Dudenhausen JW. The diabetic pregnancy, macrosomia, and perinatal nutritional programming. Nestle Nutr Workshop Ser Pediatr Program. 2008;61:91–102.

    Article  PubMed  CAS  Google Scholar 

  83. Plagemann A. Perinatal nutrition and hormone-dependent programming of food intake. Horm Res. 2006;65 Suppl 3:83–9.

    Article  PubMed  CAS  Google Scholar 

  84. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. 2005;86:661–8.

    Article  PubMed  CAS  Google Scholar 

  85. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78:149–72.

    Article  Google Scholar 

  86. Stellar E. The physiology of motivation. Psychol Rev. 1954;61:5–22.

    Article  PubMed  CAS  Google Scholar 

  87. Brobeck J, Tepperman J, Long C. Experimental hypothalamic hyperphagia in the albino rat. Yale J Biol Med. 1943;15:831–53.

    PubMed  CAS  Google Scholar 

  88. Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951;77:323–4.

    PubMed  CAS  Google Scholar 

  89. Peruzzo B, Pastor FE, Blazquez JL, et al. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000;132:10–26.

    Article  PubMed  CAS  Google Scholar 

  90. Hahn TM, Breininger JF, Baskin DG, et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1:271–2.

    Article  PubMed  CAS  Google Scholar 

  91. Broberger C, Johansen J, Johansson C, et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998;95:15043–8.

    Article  PubMed  CAS  Google Scholar 

  92. Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21:1375–85.

    Article  PubMed  CAS  Google Scholar 

  93. Schwartz MW, Woods SC, Porte D, et al. Central nervous system control of food intake. Nature. 2000;404:661–71.

    PubMed  CAS  Google Scholar 

  94. Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 2004;24:2797–805.

    Article  PubMed  CAS  Google Scholar 

  95. Nilsson I, Johansen JE, Schalling M, et al. Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. Brain Res Dev Brain Res. 2005;155:147–54.

    Article  PubMed  CAS  Google Scholar 

  96. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304:108–10.

    Article  PubMed  CAS  Google Scholar 

  97. Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci. 2003;18:613–21.

    Article  PubMed  Google Scholar 

  98. Grayson BE, Allen SE, Billes SK, et al. Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate. Neuroscience. 2006;143:975–86.

    Article  PubMed  CAS  Google Scholar 

  99. Koutcherov Y, Mai JK, Paxinos G. Hypothalamus of the human fetus. J Chem Neuroanat. 2003;26:253–70.

    Article  PubMed  CAS  Google Scholar 

  100. Louis GW, Myers MG Jr. The role of leptin in the regulation of neuroendocrine function and CNS development. Rev Endocr Metab Disord. 2007;8:85–94.

    Article  PubMed  CAS  Google Scholar 

  101. Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101:1020–7.

    Article  PubMed  CAS  Google Scholar 

  102. Devaskar SU, Ollesch C, Rajakumar RA, et al. Developmental changes in ob gene expression and circulating leptin peptide concentrations. Biochem Biophys Res Commun. 1997;238:44–7.

    Article  PubMed  CAS  Google Scholar 

  103. Mistry AM, Swick A, Romsos DR. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am J Physiol. 1999;277:R742–7.

    PubMed  CAS  Google Scholar 

  104. Ahima RS, Bjorbaek C, Osei S, et al. Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology. 1999;140:2755–62.

    Article  PubMed  CAS  Google Scholar 

  105. Steppan CM, Swick AG. A role for leptin in brain development. Biochem Biophys Res Commun. 1999;256:600–2.

    Article  PubMed  CAS  Google Scholar 

  106. Proulx K, Richard D, Walker CD. Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake. Endocrinology. 2002;143:4683–92.

    Article  PubMed  CAS  Google Scholar 

  107. Levine JA. Non-exercise activity thermogenesis. Proc Nutr Soc. 2003;62:667–79.

    Article  PubMed  CAS  Google Scholar 

  108. Bray GA. Obesity, a disorder of nutrient partitioning: the MONA LISA hypothesis. J Nutr. 1991;121:1146–62.

    PubMed  CAS  Google Scholar 

  109. Esler M, Straznicky N, Eikelis N, et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48:787–96.

    Article  PubMed  CAS  Google Scholar 

  110. Sell H, Deshaies Y, Richard D. The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol. 2004;36:2098–104.

    Article  PubMed  CAS  Google Scholar 

  111. Bachman ES, Dhillon H, Zhang CY, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297:843–5.

    Article  PubMed  CAS  Google Scholar 

  112. Young JB, Landsberg L. Suppression of sympathetic nervous system during fasting. Science. 1977;196:1473–5.

    Article  PubMed  CAS  Google Scholar 

  113. Elmquist JK, Flier JS. Neuroscience. The fat-brain axis enters a new dimension. Science. 2004;304:63–4.

    Article  PubMed  CAS  Google Scholar 

  114. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S78–S82.

    Article  PubMed  CAS  Google Scholar 

  115. Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. Regul Pept. 2008;149:3–10.

    Article  PubMed  CAS  Google Scholar 

  116. Prior LJ, Eikelis N, Armitage JA, et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2010;55:862–8.

    Article  PubMed  CAS  Google Scholar 

  117. Prior LJ, Head GA, Morris MJ, et al. Maternal obesity in rabbits elevates offspring blood pressure and evokes selective leptin resistance in offspring. Hypertension. 2009;53:1117.

    Google Scholar 

  118. Zukowska-Grojec Z. Neuropeptide Y. A novel sympathetic stress hormone and more. Ann N Y Acad Sci. 1995;771:219–33.

    Article  PubMed  CAS  Google Scholar 

  119. Kuo LE, Kitlinska JB, Tilan JU, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13:803–11.

    Article  PubMed  CAS  Google Scholar 

  120. Zukowska Z. Atherosclerosis and angiogenesis: what do nerves have to do with it? Pharmacol Rep. 2005;57 Suppl:229–34.

    PubMed  Google Scholar 

  121. Igosheva N, Taylor PD, Poston L, et al. Prenatal stress in the rat results in increased blood pressure responsiveness to stress and enhanced arterial reactivity to neuropeptide Y in adulthood. J Physiol. 2007;582:665–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Andrew Armitage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prior, L.J., Head, G.A., Armitage, J.A. (2011). Experimental Models of Maternal Obesity and High-Fat Diet During Pregnancy and Programmed Obesity in the Offspring. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics