Skip to main content

Intrauterine Growth Restriction, Small for Gestational Age, and Experimental Obesity

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1352 Accesses

Abstract

Both high and low birth weight (LBW) have a programmed predisposition to adult metabolic syndrome, which is exacerbated by exposure to Western high-fat diets. This review discusses animal models of obesity, including programming during embryonic, fetal, and postnatal periods. Programming affects a diversity of organ systems, but we focus specifically on central appetite function and peripheral adipogenesis/lipogenesis. Appetite is regulated by hypothalamic orexigenic and anorexigenic pathways, the neurons of which receive central (e.g., synaptic) and peripheral (e.g., leptin, ghrelin, insulin) input which adjust orexigenic drive. In humans, appetite pathways are well developed while satiety circuits are notably less functional, contributing to the difficulty of self-motivated dietary weight loss. The analysis of neural stem cell cultures (NSCs) has provided an insight into how leptin and insulin deficiency, associated with LBW, may permanently affect development of hypothalamic appetite pathways and thus program ingestive behavior. In regards to programmed adiposity, we review the pivotal role of the adipogenic transcription factor PPARĪ³, which promotes both adipogenesis and lipogenesis, contributing to the development of obesity. Neonatal leptin supplementation may prevent programmed obesity in animal models of LBW. Although this hormone may be considered as an additive for LBW humans, additional studies are needed prior to clinical intervention. Further research is needed for approaches to the optimization of fetal growth throughout pregnancy. In the interim, maternal breastfeeding of LBW and normal weight newborns should be encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker DJ, Bagby SP, Hanson MA. Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol. 2006;2(12):700ā€“7.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Barker DJ. Fetal programming of coronary heart disease. Trends Endocrinol Metab. 2002;13(9):364ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr. 2001;4(2B):611ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Nilsson PM, Ostergren PO, Nyberg P, Soderstrom M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149378 Swedish boys. J Hypertens. 1997;15(12 Pt 2):1627ā€“31.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Ozanne SE, Hales CN. Early programming of glucose-insulin metabolism. Trends Endocrinol Metab. 2002;13(9):368ā€“73.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Yajnik CS. Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr. 2004;134(1):205ā€“10.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Desai M, Hales CN. Role of fetal and infant growth in programming metabolism in later life. Biol Rev Camb Philos Soc. 1997;72(2):329ā€“48.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5ā€“20.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Ross MG, Desai M. Gestational programming: population survival effects of drought and famine during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R25ā€“R33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Barker DJ. Intrauterine programming of adult disease. Mol Med Today. 1995;1(9):418ā€“23.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Desai M, Crowther NJ, Ozanne SE, Lucas A, Hales CN. Adult glucose and lipid metabolism may be programmed during fetal life. Biochem Soc Trans. 1995;23(2):331ā€“5.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Lucas A, Baker BA, Desai M, Hales CN. Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. Br J Nutr. 1996;76(4):605ā€“12.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Barker M, Robinson S, Osmond C, Barker DJ. Birth weight and body fat distribution in adolescent girls. Arch Dis Child. 1997;77(5):381ā€“3.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Jones AP, Simson EL, Friedman MI. Gestational undernutrition and the development of obesity in rats. J Nutr. 1984;114(8):1484ā€“92.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):E83ā€“7.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Levin BE, Govek E. Gestational obesity accentuates obesity in obesity-prone progeny. Am J Physiol. 1998;275(4 Pt 2):R1374ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Faust IM, Johnson PR, Hirsch J. Long-term effects of early nutritional experience on the development of obesity in the rat. J Nutr. 1980;110(10):2027ā€“34.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Gillman MW, Rifas-Shiman SL, Camargo CA Jr., Berkey CS, Frazier AL, Rockett HR, et al. Risk of overweight among adolescents who were breastfed as infants. JAMA. 2001;285(19):2461ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Barker DJ. In utero programming of chronic disease. Clin Sci (Lond). 1998;95(2):115ā€“28.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Barker DJ. Intrauterine programming of adult disease. Mol Med Today. 1995;1(9):418ā€“23.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Phillips DI, Barker DJ, Osmond C. Infant feeding, fetal growth and adult thyroid function. Acta Endocrinol (Copenh). 1993;129(2):134ā€“8.

    CASĀ  Google ScholarĀ 

  24. Dodic M, May CN, Wintour EM, Coghlan JP. An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci (Lond). 1998;94(2):149ā€“55.

    CASĀ  Google ScholarĀ 

  25. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85(2):571ā€“633.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes. 1997;46(6):1001ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Desai M, Gayle D, Babu J, Ross MG. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R91ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Remacle C, Bieswal F, Reusens B. Programming of obesity and cardiovascular disease. Int J Obes Relat Metab Disord. 2004;28 Suppl 3:S46ā€“S53.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  29. Andrew R, Phillips DI, Walker BR. Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab. 1998;83(5):1806ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Rogers I. The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int J Obes Relat Metab Disord. 2003;27(7):755ā€“77.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Yajnik C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc Nutr Soc. 2000;59(2):257ā€“65.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Stocker CJ, Arch JR, Cawthorne MA. Fetal origins of insulin resistance and obesity. Proc Nutr Soc. 2005;64(2):143ā€“51.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Jaquet D, Deghmoun S, Chevenne D, Collin D, Czernichow P, Levy-Marchal C. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia. 2005;48(5):849ā€“55.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Vanhala M. Childhood weight and metabolic syndrome in adults. Ann Med. 1999;31(4):236ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Widdowson EM, McCance RA. A review: new thoughts on growth. Pediatr Res. 1975;9(3):154ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. McCance RA, Widdowson EM. The effect of undernutrition upon the composition of the body and its tissues. Acta Med Scand. 1953;146(1):45ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Widdowson EM, McCance RA. The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proc R Soc Lond B Biol Sci. 1963;158:329ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Widdowson EM, McCance RA. Some effects of accelerating growth. I. General somatic development. Proc R Soc Lond B Biol Sci. 1960;152:188ā€“206.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Gluckman PD, Cutfield W, Hofman P, Hanson MA. The fetal, neonatal, and infant environments-the long-term consequences for disease risk. Early Hum Dev. 2005;81(1):51ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Horton TH. Fetal origins of developmental plasticity: animal models of induced life history variation. Am J Hum Biol. 2005;17(1):34ā€“43.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  42. Winick M. Cellular growth in intrauterine malnutrition. Pediatr Clin North Am. 1970;17(1):69ā€“78.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Winick M, Rosso P, Brasel JA. Malnutrition and cellular growth in the brain: existence of critical periods. In: lipids, malnutrition and the developing brain. Ciba Found Symp. 1971;199ā€“212.

    Google ScholarĀ 

  44. Winick M, Noble A. Cellular response in rats during malnutrition at various ages. J Nutr. 1966;89(3):300ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Winick M, Noble A. Cellular response with increased feeding in neonatal rats. J Nutr. 1967;91(2):179ā€“82.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Winick M, Noble A. Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Dev Biol. 1965;12(3):451ā€“66.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Desai M, Crowther NJ, Lucas A, Hales CN. Organ-selective growth in the offspring of protein-restricted mothers. Br J Nutr. 1996;76(4):591ā€“603.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Desai M, Gayle D, Babu J, Ross MG. Permanent reduction in heart and kidney organ growth in offspring of undernourished rat dams. Am J Obstet Gynecol. 2005;193 3 Suppl:1224ā€“32.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Vuguin PM. Animal models for small for gestational age and fetal programming of adult disease. Horm Res. 2007;68(3):113ā€“23.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005;20(10):527ā€“33.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Toste FP, de Moura EG, Lisboa PC, Fagundes AT, de OE, Passos MC. Neonatal leptin treatment programmes leptin hypothalamic resistance and intermediary metabolic parameters in adult rats. Br J Nutr. 2006;95(4):830ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Desai M, Gayle D, Babu J, Ross MG. The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. Am J Obstet Gynecol. 2007;196(6):555ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Ozanne SE. Metabolic programming in animals. Br Med Bull. 2001;60:143ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Ozanne SE, Hales CN. The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proc Nutr Soc. 1999;58(3):615ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Swenne I, Crace CJ, Milner RD. Persistent impairment of insulin secretory response to glucose in adult rats after limited period of protein-calorie malnutrition early in life. Diabetes. 1987;36(4):454ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Woodall SM, Johnston BM, Breier BH, Gluckman PD. Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr Res. 1996;40(3):438ā€“43.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Shepard TH, Mackler B, Finch CA. Reproductive studies in the iron-deficient rat. Teratology. 1980;22(3):329ā€“34.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Felt BT, Lozoff B. Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. J Nutr. 1996;126(3):693ā€“701.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Reinisch JM, Simon NG, Karow WG, Gandelman R. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science. 1978;202(4366):436ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Seckl. JR. Glucocorticoids, 11b-hydroxysteroid [beta] dehydrogenase and fetal programming. In: Oā€™Brien PMS, Wheeler T, Barker DJP, editors. Fetal programming. Influences on development and disease in later life. London: Royal College of Obstetricians and Gynaecologists; 1999. pp. 430ā€“9.

    Google ScholarĀ 

  61. Wigglesworth JS. Fetal growth retardation. Animal model: uterine vessel ligation in the pregnant rat. Am J Pathol. 1974;77(2):347ā€“50.

    PubMedĀ  CASĀ  Google ScholarĀ 

  62. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001;50(10):2279ā€“86.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Camprubi M, Ortega A, Balaguer A, Iglesias I, Girabent M, Callejo J, et al. Cauterization of meso-ovarian vessels, a new model of intrauterine growth restriction in rats. Placenta. 2009;30(9):761ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35(7):730ā€“43.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Anthony RV, Scheaffer AN, Wright CD, Regnault TR. Ruminant models of prenatal growth restriction. Reprod Suppl. 2003;61:183ā€“94.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. Luque A, Carpizo DR, Iruela-Arispe ML. ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem. 2003;278(26):23656ā€“65.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Wallace JM, Regnault TR, Limesand SW, Hay WW Jr., Anthony RV. Investigating the causes of low birth weight in contrasting ovine paradigms. J Physiol. 2005;565(Pt 1):19ā€“26.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Barry JS, Anthony RV. The pregnant sheep as a model for human pregnancy. Theriogenology. 2008;69(1):55ā€“67.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Wallace JM, Aitken RP, Milne JS, Hay WW Jr. Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol Reprod. 2004;71(4):1055ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Nielsen JN, Oā€™Brien KO, Witter FR, Chang SC, Mancini J, Nathanson MS, et al. High gestational weight gain does not improve birth weight in a cohort of African American adolescents. Am J Clin Nutr. 2006;84(1):183ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Ross MG, Desai M, Khorram O, McKnight RA, Lane RH, Torday J. Gestational programming of offspring obesity: a potential contributor to Alzheimerā€™s disease. Curr Alzheimer Res. 2007;4(2):213ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Crossey PA, Pillai CC, Miell JP. Altered placental development and intrauterine growth restriction in IGF binding protein-1 transgenic mice. J Clin Invest. 2002;110(3):411ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  73. Coe BL, Kirkpatrick JR, Taylor JA, vom Saal FS. A new ā€˜crowded uterine hornā€™ mouse model for examining the relationship between foetal growth and adult obesity. Basic Clin Pharmacol Toxicol. 2008;102(2):162ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Tumbleson M. Swine in biomedical research. New York, NY: Plenum Press; 1986.

    Google ScholarĀ 

  75. Baker DH. Animal models in nutrition research. J Nutr. 2008;138(2):391ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  76. Stahl CH, Lei X, Larson B. Introduction to the symposium: appropriate animal models for nutritional research in health and disease. J Nutr. 2008;138(2):389ā€“390.

    PubMedĀ  CASĀ  Google ScholarĀ 

  77. Ireland JJ, Roberts RM, Palmer GH, Bauman DE, Bazer FW. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research. J Anim Sci. 2008;86(10):2797ā€“805.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Brambilla G, Cantafora A. Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Ann Ist Super Sanita. 2004;40(2):241ā€“4.

    PubMedĀ  Google ScholarĀ 

  79. Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome. J Nutr. 2008;138(2):397ā€“402.

    PubMedĀ  CASĀ  Google ScholarĀ 

  80. Brisbin IL Jr., Mayer JJ. Problem pigs in a poke: a good pool of data. Science. 2001;294(5545):1280ā€“1.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. Unterberger A, Szyf M, Nathanielsz PW, Cox LA. Organ and gestational age effects of maternal nutrient restriction on global methylation in fetal baboons. J Med Primatol. 2009;38(4):219ā€“27.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Ross MG, Beall MH. Adult sequelae of intrauterine growth restriction. Semin Perinatol. 2008;32(3):213ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  83. Arora S, Anubhuti. Role of neuropeptides in appetite regulation and obesity ā€“ a review. Neuropeptides. 2006;40:375ā€“401.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425ā€“32.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Oliver P, Pico C, De Matteis R, Cinti S, Palou A. Perinatal expression of leptin in rat stomach. Dev Dyn. 2002;223(1):148ā€“54.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Cinti S, Matteis RD, Pico C, Ceresi E, Obrador A, Maffeis C, et al. Secretory granules of endocrine and chief cells of human stomach mucosa contain leptin. Int J Obes Relat Metab Disord. 2000;24(6):789ā€“93.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Hoggard N, Hunter L, Duncan JS, Williams LM, Trayhurn P, Mercer JG. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc Natl Acad Sci USA. 1997;94(20):11073ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med. 1997;3(9):1029ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Pich EM, Messori B, Zoli M, Ferraguti F, Marrama P, Biagini G, et al. Feeding and drinking responses to neuropeptide Y injections in the paraventricular hypothalamic nucleus of aged rats. Brain Res. 1992;575(2):265ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Morley JE, Levine AS, Gosnell BA, Kneip J, Grace M. Effect of neuropeptide Y on ingestive behaviors in the rat. Am J Physiol. 1987;252(3 Pt 2):R599ā€“R609.

    PubMedĀ  CASĀ  Google ScholarĀ 

  91. Stanley BG, Leibowitz SF. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA. 1985;82(11):3940ā€“3.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Stanley BG, Chin AS, Leibowitz SF. Feeding and drinking elicited by central injection of neuropeptide Y: evidence for a hypothalamic site(s) of action. Brain Res Bull. 1985;14(6):521ā€“4.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Stanley BG, Leibowitz SF, Neuropeptide Y. stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 1984;35(26):2635ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Yokosuka M, Kalra PS, Kalra SP. Inhibition of neuropeptide Y (NPY)-induced feeding and c-Fos response in magnocellular paraventricular nucleus by a NPY receptor antagonist: a site of NPY action. Endocrinology. 1999;140(10):4494ā€“500.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Vinuela MC, Larsen PJ. Identification of NPY-induced c-Fos expression in hypothalamic neurones projecting to the dorsal vagal complex and the lower thoracic spinal cord. J Comp Neurol. 2001;438(3):286ā€“99.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Yokosuka M, Dube MG, Kalra PS, Kalra SP. The mPVN mediates blockade of NPY-induced feeding by a Y5 receptor antagonist: a c-FOS analysis. Peptides. 2001;22(3):507ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Niimi M, Sato M, Taminato T. Neuropeptide Y in central control of feeding and interactions with orexin and leptin. Endocrine. 2001;14(2):269ā€“73.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Yokosuka M, Xu B, Pu S, Kalra PS, Kalra SP. Neural substrates for leptin and neuropeptide Y (NPY) interaction: hypothalamic sites associated with inhibition of NPY-induced food intake. Physiol Behav. 1998;64(3):331ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Xu B, Li BH, Rowland NE, Kalra SP. Neuropeptide Y injection into the fourth cerebroventricle stimulates c-Fos expression in the paraventricular nucleus and other nuclei in the forebrain: effect of food consumption. Brain Res. 1995;698(1ā€“2):227ā€“31.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. Lambert PD, Phillips PJ, Wilding JP, Bloom SR, Herbert J. c-fos expression in the paraventricular nucleus of the hypothalamus following intracerebroventricular infusions of neuropeptide Y. Brain Res. 1995;670(1):59ā€“65.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Li BH, Xu B, Rowland NE, Kalra SP. c-fos expression in the rat brain following central administration of neuropeptide Y and effects of food consumption. Brain Res. 1994;665(2):277ā€“84.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  102. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304(5667):110ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  103. Takahashi KA, Cone RD. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology. 2005;146(3):1043ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  104. Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101(5):1020ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet. 2006;70(4):295ā€“301.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Herrera E, Lasuncion MA, Huerta L, Martin-Hidalgo A. Plasma leptin levels in rat mother and offspring during pregnancy and lactation. Biol Neonate. 2000;78(4):315ā€“20.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  107. Wirth JB, Epstein AN. Ontogeny of thirst in the infant rat. Am J Physiol. 1976;230(1):188ā€“98.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Davidowa H, Plagemann A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport. 2000;11(12):2795ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Singer LK, Kuper J, Brogan RS, Smith MS, Grove KL. Novel expression of hypothalamic neuropeptide Y during postnatal development in the rat. Neuroreport. 2000;11(5):1075ā€“80.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Varma A, He J, Weissfeld L, Devaskar SU. Postnatal intracerebroventricular exposure to neuropeptide Y causes weight loss in female adult rats. Am J Physiol Regul Integr Comp Physiol. 2003;284(6):R1560ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  111. Lin J, Richard BC, Kraeling RR, Rampacek GB. Developmental changes in the long form leptin receptor and related neuropeptide gene expression in the pig brain. Biol Reprod. 2001;64(6):1614ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. Matsuda J, Yokota I, Tsuruo Y, Murakami T, Ishimura K, Shima K, et al. Development changes in long-form leptin receptor expression and localization in rat brain. Endocrinology. 1999;140(11):5233ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Proulx K, Richard D, Walker CD. Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake. Endocrinology. 2002;143(12):4683ā€“92.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  114. Mistry AM, Swick A, Romsos DR. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am J Physiol. 1999;277(3 Pt 2):R742ā€“7.

    PubMedĀ  CASĀ  Google ScholarĀ 

  115. Howe DC, Gertler A, Challis JR. The late gestation increase in circulating ACTH and cortisol in the fetal sheep is suppressed by intracerebroventricular infusion of recombinant ovine leptin. J Endocrinol. 2002;174(2):259ā€“66.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  116. Yuen BS, McMillen IC, Symonds ME, Owens PC. Abundance of leptin mRNA in fetal adipose tissue is related to fetal body weight. J Endocrinol. 1999;163(3):R11ā€“4.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. Anguita RM, Sigulem DM, Sawaya AL. Intrauterine food restriction is associated with obesity in young rats. J Nutr. 1993;123(8):1421ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  118. Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol. 1992;99(3):154ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  119. Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999;836(1ā€“2):146ā€“55.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  120. Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, et al. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol. 1999;11(7):541ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  121. Heidel E, Plagemann A, Davidowa H. Increased response to NPY of hypothalamic VMN neurons in postnatally overfed juvenile rats. Neuroreport. 1999;10(9):1827ā€“31.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  122. Davidowa H, Li Y, Plagemann A. Altered neuronal responses to feeding-relevant peptides as sign of developmental plasticity in the hypothalamic regulatory system of body weight. Zh Vyssh Nerv Deiat Im I P Pavlova. 2003;53(5):663ā€“70.

    PubMedĀ  Google ScholarĀ 

  123. Davidowa H, Plagemann A. Different responses of ventromedial hypothalamic neurons to leptin in normal and early postnatally overfed rats. Neurosci Lett. 2000;293(1):21ā€“4.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  124. Schmidt I, Schoelch C, Ziska T, Schneider D, Simon E, Plagemann A. Interaction of genetic and environmental programming of the leptin system and of obesity disposition. Physiol Genomics. 2000;3(2):113ā€“20.

    PubMedĀ  CASĀ  Google ScholarĀ 

  125. Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci. 2003;18(3):613ā€“21.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  126. Davidowa H, Li Y, Plagemann A. Differential response to NPY of PVH and dopamine-responsive VMH neurons in overweight rats. Neuroreport. 2002;13(12):1523ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  127. Jones AP, Friedman MI. Obesity and adipocyte abnormalities in offspring of rats undernourished during pregnancy. Science. 1982;215(4539):1518ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  128. Geary M, Pringle PJ, Persaud M, Wilshin J, Hindmarsh PC, Rodeck CH, et al. Leptin concentrations in maternal serum and cord blood: relationship to maternal anthropometry and fetal growth. Br J Obstet Gynaecol. 1999;106(10):1054ā€“60.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  129. Hoggard N, Haggarty P, Thomas L, Lea RG. Leptin expression in placental and fetal tissues: does leptin have a functional role? Biochem Soc Trans. 2001;29(Pt 2):57ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  130. Blum JW, Zbinden Y, Hammon HM, Chilliard Y. Plasma leptin status in young calves: effects of pre-term birth, age, glucocorticoid status, suckling, and feeding with an automatic feeder or by bucket. Domest Anim Endocrinol. 2005;28(2):119ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  131. Kotani Y, Yokota I, Kitamura S, Matsuda J, Naito E, Kuroda Y. Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight. Clin Endocrinol (Oxf). 2004;61(4):418ā€“23.

    ArticleĀ  CASĀ  Google ScholarĀ 

  132. McMillen IC, Muhlhausler BS, Duffield JA, Yuen BS. Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc. 2004;63(3):405ā€“12.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  133. Eckert JE, Gatford KL, Luxford BG, Campbell RG, Owens PC. Leptin expression in offspring is programmed by nutrition in pregnancy. J Endocrinol. 2000;165(3):R1ā€“6.

    ArticleĀ  Google ScholarĀ 

  134. Warnes KE, Morris MJ, Symonds ME, Phillips ID, Clarke IJ, Owens JA, et al. Effects of increasing gestation, cortisol and maternal undernutrition on hypothalamic neuropeptide Y expression in the sheep fetus. J Neuroendocrinol. 1998;10(1):51ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  135. Plagemann A, Waas T, Harder T, Rittel F, Ziska T, Rohde W. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides. 2000;34(1):1ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  136. Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 2004;24(11):2797ā€“805.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  137. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304(5667):108ā€“10.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  138. Bouret SG, Simerly RB. Minireview: Leptin and development of hypothalamic feeding circuits. Endocrinology. 2004;145(6):2621ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  139. Desai M, Gayle D, Han G, Ross MG. Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reprod Sci. 2007;14(4):329ā€“37.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  140. Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 2005;1(6):371ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  141. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146(10):4211ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  142. Desai M, Babu J, Ross MG. Programmed metabolic syndrome: prenatal undernutrition and postweaning overnutrition. Am J Physiol Regul Integr Comp Physiol. 2007;293(6):R2306ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  143. Cetin I, Morpurgo PS, Radaelli T, Taricco E, Cortelazzi D, Bellotti M, et al. Fetal plasma leptin concentrations: relationship with different intrauterine growth patterns from 19 weeks to term. Pediatr Res. 2000;48(5):646ā€“51.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  144. Jaquet D, Leger J, Levy-Marchal C, Oury JF, Czernichow P. Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J Clin Endocrinol Metab. 1998;83(4):1243ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  145. Matsuda J, Yokota I, Iida M, Murakami T, Yamada M, Saijo T, et al. Dynamic changes in serum leptin concentrations during the fetal and neonatal periods. Pediatr Res. 1999;45(1):71ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  146. Cinaz P, Sen E, Bideci A, Ezgu FS, Atalay Y, Koca E. Plasma leptin levels of large for gestational age and small for gestational age infants. Acta Paediatr. 1999;88(7):753ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  147. Akcurin S, Velipasaoglu S, Akcurin G, Guntekin M. Leptin profile in neonatal gonadotropin surge and relationship between leptin and body mass index in early infancy. J Pediatr Endocrinol Metab. 2005;18(2):189ā€“95.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  148. Singhal A, Farooqi IS, Oā€™Rahilly S, Cole TJ, Fewtrell M, Lucas A. Early nutrition and leptin concentrations in later life. Am J Clin Nutr. 2002;75(6):993ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  149. Desai M, Li T, Ross MG. Developmental programming of dysfunctional hypothalamic neuralo stem cells in leptin deficient, low birth weight newborns. J DOHaD. 2009;1 Suppl 1:S77.

    Google ScholarĀ 

  150. Wabitsch M. The acquisition of obesity: insights from cellular and genetic research. Proc Nutr Soc. 2000;59(2):325ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  151. Slavin BG. Fine structural studies on white adipocyte differentiation. Anat Rec. 1979;195(1):63ā€“72.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  152. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78(3):783ā€“809.

    PubMedĀ  CASĀ  Google ScholarĀ 

  153. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2(4):239ā€“54.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  154. Poissonnet CM, Burdi AR, Bookstein FL. Growth and development of human adipose tissue during early gestation. Early Hum Dev. 1983;8(1):1ā€“11.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  155. Sypniewska G, Bjorntorp P. Increased DNA synthesis in adipocytes and capillary endothelium in rat adipose tissue during overfeeding. Eur J Clin Invest. 1987;17(3):202ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  156. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest. 1997;100(12):3149ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  157. Gnanalingham MG, Mostyn A, Symonds ME, Stephenson T. Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1407ā€“15.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  158. Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T. Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol. 2003;179(3):293ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  159. Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  160. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 1995;64:345ā€“73.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  161. Johnson F. Sex differences in fat patterning in children and youth. In: Bouchard C, Johnson F, editors. Fat distribution during growth and later health outcomes. New York, NY: Liss; 1988. pp. 85ā€“102.

    Google ScholarĀ 

  162. Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest. 1979;63(2):239ā€“46.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  163. Gaben-Cogneville AM, Swierczewski E. Studies on cell proliferation in inguinal adipose tissue during early development in the rat. Lipids. 1979;14(7):669ā€“75.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  164. Kirtland J, Harris PM. Changes in adipose tissue of the rat due early undernutrition followed by rehabilitation. 3. Changes in cell replication studied with tritiated thymidine. Br J Nutr. 1980;43(1):33ā€“43.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  165. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  166. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276(41):37731ā€“4.

    PubMedĀ  CASĀ  Google ScholarĀ 

  167. Morrison RF, Farmer SR. Insights into the transcriptional control of adipocyte differentiation. J Cell Biochem. 1999; Suppl 32ā€“33:75:59ā€“67.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  168. Desai M, Guang H, Ferelli M, Kallichanda N, Lane RH. Programmed upregulation of adipogenic transcription factors in intrauterine growth-restricted offspring. Reprod Sci. 2008;15(8):785ā€“96.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  169. Desai M, Lane RH, Han G, Ross MG. Failure to suppress adipogenic transcription factor (PPAR) activity leads to programmed obesity in IUGR offspring. Reprod Sci. 2008;15 Suppl:76A.

    ArticleĀ  CASĀ  Google ScholarĀ 

  170. Powell E, Kuhn P, Xu W. Nuclear receptor cofactors in PPARgamma-mediated adipogenesis and adipocyte energy metabolism. PPAR Res. 2006;2007:53843.

    Google ScholarĀ 

  171. Yang T, Fu M, Pestell R, Sauve AA. SIRT1 and endocrine signaling. Trends Endocrinol Metab. 2006;17(5):186ā€“91.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  172. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, hado De OR, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  173. Kloting N, Bluher M. Extended longevity and insulin signaling in adipose tissue. Exp Gerontol. 2005;40(11):878ā€“83.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  174. Walczak R, Tontonoz P. PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. J Lipid Res. 2002;43(2):177ā€“86.

    PubMedĀ  CASĀ  Google ScholarĀ 

  175. Bocher V, Pineda-Torra I, Fruchart JC, Staels B. PPARs: transcription factors controlling lipid and lipoprotein metabolism. Ann N Y Acad Sci. 2002;967:7ā€“18.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  176. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta. 1996;1302(2):93ā€“109.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  177. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996;10(9):1096ā€“107.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  178. Ailhaud G, Amri EZ, Grimaldi PA. Fatty acids and adipose cell differentiation. Prostaglandins Leukot Essent Fatty Acids. 1995;52(2ā€“3):113ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  179. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15(19):5336ā€“48.

    PubMedĀ  CASĀ  Google ScholarĀ 

  180. Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest. 1998;101(1):1ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  181. Boizard M, Le LX, Lemarchand P, Foufelle F, Ferre P, Dugail I. Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors. J Biol Chem. 1998;273(44):29164ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  182. Desai M, Lane RH, Han G, Ross MG. Response of IUGR primary cell culture adipocytes to PPARg activator-ligand and repressor-ligand mechanisms of programmed obesity. Reprod Sci. 2008;15 Suppl:194A.

    ArticleĀ  CASĀ  Google ScholarĀ 

  183. Fowden AL, Giussani DA, Forhead AJ. Endocrine and metabolic programming during intrauterine development. Early Hum Dev. 2005;81(9):723ā€“34.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  184. Phillips DI. Fetal programming of the neuroendocrine response to stress: links between low birth weight and the metabolic syndrome. Endocr Res. 2004;30(4):819ā€“26.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  185. Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology. 2001;142(5):1692ā€“702.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  186. Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet. 1993;341(8841):339ā€“41.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  187. Oā€™Regan D, Kenyon CJ, Seckl JR, Holmes MC. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab. 2004;287(5):E863ā€“E70.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  188. Murphy BE, Clark SJ, Donald IR, Pinsky M, Vedady D. Conversion of maternal cortisol to cortisone during placental transfer to the human fetus. Am J Obstet Gynecol. 1974;118(4):538ā€“41.

    PubMedĀ  CASĀ  Google ScholarĀ 

  189. Brown RW, Chapman KE, Kotelevtsev Y, Yau JL, Lindsay RS, Brett L, et al. Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2. Biochem J. 1996;313(Pt 3):1007ā€“17.

    PubMedĀ  CASĀ  Google ScholarĀ 

  190. Stewart PM, Rogerson FM, Mason JI. Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab. 1995;80(3):885ā€“90.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  191. Symonds ME, Budge H, Stephenson T, Gardner DS. Leptin, fetal nutrition, and long-term outcomes for adult hypertension. Endothelium. 2005;12(1ā€“2):73ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  192. Rajala MW, Scherer PE. Minireview: The adipocyte ā€“ at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003;144(9):3765ā€“73.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  193. Shepherd PR, Crowther NJ, Desai M, Hales CN, Ozanne SE. Altered adipocyte properties in the offspring of protein malnourished rats. Br J Nutr. 1997;78(1):121ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  194. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4(4):597ā€“609.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  195. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3(1):25ā€“38.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  196. Hara K, Kubota N, Tobe K, Terauchi Y, Miki H, Komeda K, et al. The role of PPARgamma as a thrifty gene both in mice and humans. Br J Nutr. 2000;84 Suppl 2:S235ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  197. Kadowaki T, Hara K, Kubota N, Tobe K, Terauchi Y, Yamauchi T, et al. The role of PPARgamma in high-fat diet-induced obesity and insulin resistance. J Diabetes Complications. 2002;16(1):41ā€“5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  198. Passos MC, Vicente LL, Lisboa PC, de Moura EG. Absence of anorectic effect to acute peripheral leptin treatment in adult rats whose mothers were malnourished during lactation. Horm Metab Res. 2004;36(9):625ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  199. Djiane J, Attig L. Role of leptin during perinatal metabolic programming and obesity. J Physiol Pharmacol. 2008;59 Suppl 1:55ā€“63.

    PubMedĀ  Google ScholarĀ 

  200. Melnik BC. Milkā€“the promoter of chronic Western diseases. Med Hypotheses. 2009;72(6):631ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  201. Vickers MH. Developmental programming and adult obesity: the role of leptin. Curr Opin Endocrinol Diabetes Obes. 2007;14(1):17ā€“22.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  202. Ukkola O. Ghrelin and metabolic disorders. Curr Protein Pept Sci. 2009;10(1):2ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  203. Hammond RA. Complex systems modeling for obesity research. Prev Chronic Dis. 2009;6(3):A97.

    PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ross, M.G., Huber, I., Desai, M. (2011). Intrauterine Growth Restriction, Small for Gestational Age, and Experimental Obesity. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics